Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Exonuclease 1-dependent and independent mismatch repair


DNA mismatch repair (MMR) acts to repair mispaired bases resulting from misincorporation errors during DNA replication and also recognizes mispaired bases in recombination (HR) intermediates. Exonuclease 1 (Exo1) is a 5' → 3' exonuclease that participates in a number of DNA repair pathways. Exo1 was identified as an exonuclease that participates in Saccharomyces cerevisiae and human MMR where it functions to excise the daughter strand after mispair recognition, and additionally Exo1 functions in end resection during HR. However, Exo1 is not absolutely required for end resection during HR in vivo. Similarly, while Exo1 is required in MMR reactions that have been reconstituted in vitro, genetics studies have shown that it is not absolutely required for MMR in vivo suggesting the existence of Exo1-independent and Exo1-dependent MMR subpathways. Here, we review what is known about the Exo1-independent and Exo1-dependent subpathways, including studies of mutations in MMR genes that specifically disrupt either subpathway.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View