Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
A novel ITGA2B double cytosine frameshift variant (c.1986_1987insCC) leads to Glanzmann's thrombasthenia in a cat
Abstract
Background
Glanzmann's thrombasthenia (GT) is a congenital platelet disorder affecting approximately 1:1 000 000 people globally and characterized by impaired platelet aggregation and clot retraction. Autosomal recessive, loss-of-function, variants in ITGA2B or ITGB3 of the αIIbβ3 receptor cause the disease in humans. A cat affected by Glanzmann's and macrothrombocytopenia was presented to the UC Davis VMTH.Hypothesis/objectives
Severe thrombopathia in this cat has an underlying genetic etiology.Animals
A single affected patient, 2 age-matched clinically healthy controls, and a geriatric population (n = 20) of normal cats.Methods
Physical examination and clinical pathology tests were performed on the patient. Flow cytometry and platelet aggregometry analyses for patient phenotyping were performed. Patient and validation cohort gDNA samples were extracted for Sanger sequencing of a previously identified ITGA2B (c.1986delC) variant. Reverse transcriptase PCR was performed on patient and healthy control PRP samples to verify ITGA2B variant consequence.Results
A novel c.1986_1987insCC autosomal recessive variant in ITGA2B was identified. This variant was absent in a population of 194 unrelated cats spanning 44 different breeds. Complete loss of ITGA2B transcript and protein expression was verified by RT-PCR and flow cytometry, explaining the underlying etiology of GT, and likely macrothrombocytopenia, in this cat.Conclusions and clinical importance
This study emphasizes the role of precision medicine in cardiovascular disease of cats and identified yet another variant that may be of utility for screening in the feline population. This study provides a small-volume, standardized, successful protocol for adequate platelet RNA isolation and subsequent molecular assessment of gene expression in cats.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%