Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants

Abstract

Recent research indicates that adults and infants spontaneously create and generalize hierarchical rule sets during incidental learning. Computational models and empirical data suggest that, in adults, this process is supported by circuits linking prefrontal cortex (PFC) with striatum and their modulation by dopamine, but the neural circuits supporting this form of learning in infants are largely unknown. We used near-infrared spectroscopy to record PFC activity in 8-month-old human infants during a simple audiovisual hierarchical-rule-learning task. Behavioral results confirmed that infants adopted hierarchical rule sets to learn and generalize spoken object-label mappings across different speaker contexts. Infants had increased activity over right dorsal lateral PFC when rule sets switched from one trial to the next, a neural marker related to updating rule sets into working memory in the adult literature. Infants' eye blink rate, a possible physiological correlate of striatal dopamine activity, also increased when rule sets switched from one trial to the next. Moreover, the increase in right dorsolateral PFC activity in conjunction with eye blink rate also predicted infants' generalization ability, providing exploratory evidence for frontostriatal involvement during learning. These findings provide evidence that PFC is involved in rudimentary hierarchical rule learning in 8-month-old infants, an ability that was previously thought to emerge later in life in concert with PFC maturation.

Significance statement

Hierarchical rule learning is a powerful learning mechanism that allows rules to be selected in a context-appropriate fashion and transferred or reused in novel contexts. Data from computational models and adults suggests that this learning mechanism is supported by dopamine-innervated interactions between prefrontal cortex (PFC) and striatum. Here, we provide evidence that PFC also supports hierarchical rule learning during infancy, challenging the current dogma that PFC is an underdeveloped brain system until adolescence. These results add new insights into the neurobiological mechanisms available to support learning and generalization in very early postnatal life, providing evidence that PFC and the frontostriatal circuitry are involved in organizing learning and behavior earlier in life than previously known.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View