Skip to main content
eScholarship
Open Access Publications from the University of California

Selective categories and linear canonical relations

  • Author(s): Li-Bland, D
  • Weinstein, A
  • et al.

Published Web Location

http://arxiv.org/abs/1401.7302
No data is associated with this publication.
Abstract

© 2014, Symmetry, Integrability and Geometry, All right reserved. A construction of Wehrheim and Woodward circumvents the problem that compositions of smooth canonical relations are not always smooth, building a category suitable for functorial quantization. To apply their construction to more examples, we introduce a notion of highly selective category, in which only certain morphisms and certain pairs of these morphisms are "good". We then apply this notion to the category SLREL of linear canonical relations and the result WW(SLREL) of our version of the WW construction, identifying the morphisms in the latter with pairs (L; k) consisting of a linear canonical relation and a nonnegative integer. We put a topology on this category of indexed linear canonical relations for which composition is continuous, unlike the composition in SLREL itself. Subsequent papers will consider this category from the viewpoint of derived geometry and will concern quantum counterparts.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item