Skip to main content
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Homologous RIG-I-like helicase proteins direct RNAi-mediated antiviral immunity in C. elegans by distinct mechanisms.


RNAi-mediated antiviral immunity in Caenorhabditis elegans requires Dicer-related helicase 1 (DRH-1), which encodes the helicase and C-terminal domains homologous to the mammalian retinoic acid inducible gene I (RIG-I)-like helicase (RLH) family of cytosolic immune receptors. Here we show that the antiviral function of DRH-1 requires the RIG-I homologous domains as well as its worm-specific N-terminal domain. We also demonstrate that the helicase and C-terminal domains encoded by either worm DRH-2 or human RIG-I can functionally replace the corresponding domains of DRH-1 to mediate antiviral RNAi in C. elegans. Notably, substitutions in a three-residue motif of the C-terminal regulatory domain of RIG-I that physically interacts with viral double-stranded RNA abolish the antiviral activity of C-terminal regulatory domains of both RIG-I and DRH-1 in C. elegans. Genetic analysis revealed an essential role for both DRH-1 and DRH-3 in C. elegans antiviral RNAi targeting a natural viral pathogen. However, Northern blot and small RNA deep sequencing analyses indicate that DRH-1 acts to enhance production of viral primary siRNAs, whereas DRH-3 regulates antiviral RNAi by participating in the biogenesis of secondary siRNAs after Dicer-dependent production of primary siRNAs. We propose that DRH-1 facilitates the acquisition of viral double-stranded RNA by the worm dicing complex for the subsequent processing into primary siRNAs. The strong parallel for the antiviral function of RLHs in worms and mammals suggests that detection of viral double-stranded RNA may activate completely unrelated effector mechanisms or, alternatively, that the mammalian RLHs have a conserved activity to stimulate production of viral siRNAs for antiviral immunity by an RNAi effector mechanism.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View