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ABSTRACT OF THE DISSERTATION

Model Order Reduction Methods for Meshfree Approximation

of Problems with Singularities and Discontinuities

by
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Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2014

Professor Jiun-Shyan Chen, Chair

The modeling of problems with singularities and discontinuities, such as cracks in elastic me-

dia, is one of the most challenging problems in computational mechanics. The numerical solution

of such problems necessitates sufficient resolution in the discretization, which is very costly. In

this work, model order reduction (MOR) techniques are developed for problems with singularities

based on meshfree methods. Theoretical investigation on the performance of the proposed methods

via error estimation, stability analysis, and complexity analysis is also carried out in this research.

In the first part of this work, the full discrete model is constructed using meshfree approxima-

tion along with enrichment techniques to properly approximate singularities and discontinuities.

This, on the other hand requires high order quadrature rules for sufficiently accurate integration

of enrichment functions and their derivative. Instead, an integrated singular basis function method

(ISBFM) is introduced to circumvent this difficulty. If the enrichment basis functions are properly

selected so that they satisfy the governing equation and the boundary conditions on the boundaries

connected to the singularity point, the resulting ISBFM Galerkin formulation considers only the

integration of the enrichment functions on the boundaries away from the singularity point. This
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ISBFM Galerkin formulation also allows effective MOR procedures proposed in this work.

Two MOR methods via projection of a discrete system obtained from the ISBFM Galerkin

formulation have been proposed. These are the ISBFM-UR method based on a uniform projection,

and the ISBFM-DR method based on the decomposed projection of the full scale system. The

ISBFM-UR method projects all smooth and non-smooth DOF to the reduced order space, while

the ISBFM-DR method projects smooth and non-smooth DOF separately in order to retain the

singular behavior of the full scale solution.

Error estimation and stability analysis show that the reduced order solution from the ISBFM-

DR method with the decomposed projection can achieve a much-enhanced accuracy with only

slight increase of condition number compared to the ISBFM-UR method with uniform project. It is

shown in the error estimation and confirmed by the numerical results that the errors of the two MOR

methods is mainly controlled by the right hand side vectors of the full and reduced order systems.

While the stability analysis shows that the two MOR methods provide better conditioning that the

full scale system, it also suggests that the conditioning of the ISBFM-DR method is somewhat

compromised by its better accuracy compared to that of the ISBFM-UR method. Nevertheless, the

complexity analysis shows that the ISBFM-DR method does provide a slightly better efficiency in

addition to the enhanced accuracy compared to the ISBFM-UR method.

The proposed MOR methods are applied Poisson problems with singularities and LEFM prob-

lems. The numerical tests validate the effectiveness of the proposed MOR methods, and the nu-

merical results on accuracy and stability of the proposed methods are also shown to be in good

agreement with the analytical predictions carried in this research.
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Chapter 1

Introduction

1.1 Motivation

Recent advances in virtual reality require real time simulation capabilities in order to provide real-

istic training such as virtual combat, virtual surgery, and driving simulators. However, such activi-

ties require complex models with high efficiency in many engineering and scientific applications.

Modeling complex physical phenomena such as crack formation and fragmentation requires high

fidelity models, with high demand for data storage and communication. These challenges necessi-

tate techniques for achieving both computational efficiency and accuracy. Significant efforts have

been devoted to the development of adaptive model refinement and model order reduction (MOR)

techniques to advance computational mechanics into the new frontier of “Simulation Based Engi-

neering Science”.

The purpose of MOR methods is to provide a projection of the original approximation space

to a much smaller finite dimensional space while minimizing the loss of accuracy. Issues en-

countered in large-scale systems such as data storage and computational intensity can be relieved

by introducing a reduced order projection provided with an acceptable loss of accuracy. Current

MOR methods are typically formulated under the mesh based computational framework, which

can be ineffective in large deformation problems and problems with evolving discontinuities and

1



singularities. The motivation for this dissertation is to develop new MOR approaches, based on

enhanced projection techniques, for improved accuracy in the reduced order modeling of problems

with singularities and discontinuities that are often encountered in fragment-impact applications.

1.2 Objective

The objective of this dissertation is to address the challenges in the reduced order modeling of prob-

lems with singularities and discontinuities. The main tasks of this dissertation can be summarized

as follows:

• Investigation of enhanced Galerkin formulation for enriched meshfree approximation as a

pre-conditioner for an optimal MOR. In this work, the full model is constructed from the

integrated boundary singular function method (IBSFM). This technique avoids using high

order quadrature for the domain and boundary integrals near the singularity point. This

technique is first introduced for Poisson problems with singularities and is then extended to

linear elastic fracture mechanics (LEFM).

• Development of MOR for problems with singularities and discontinuities. Typically, mesh-

free methods such as the reproducing kernel particle method (RKPM) or the element free

Galerkin (EFG) method introduce enrichment functions for achieving high accuracy in prob-

lems with rough solutions. For example, the asymptotic crack tip displacement field can be

introduced as an enrichment function in fracture mechanics problems. Under this construc-

tion of the finite dimensional scape, the RKPM and EFG solutions can be decomposed into

a smooth meshfree approximation and a non-smooth enriched approximation. An MOR

approach is investigated that introduces a reduced projection of the smooth part of the solu-

tion, and constructs the total solution by superposition of the reduced smooth solution and

unreduced non-smooth solution represented by the enrichment functions. This approach is

compared to an MOR approach that projects both smooth and non-smooth part of solutions

2



altogether.

• Theoretical investigation on the performance of the proposed MOR methods via error es-

timation, stability analysis, and complexity analysis. These analytical predictions on the

numerical performance of the proposed methods are validated with the numerical results in

the benchmark problems.

• Applications of the MOR methods to problems of interest such as Poisson problems with

singularities (due to domain geometry) and stationary crack problems in fracture mechanics.

1.3 Outline

This dissertation is organized as follows. Chapter 2 provides a literature review for meshfree meth-

ods and enrichment techniques for solving problems with singularities and discontinuities, as well

as several commonly used MOR methods. In Chapter 3, ISBFM is introduced along with en-

riched reproducing kernel approximations for Poisson problems with singularities. In Chapter 4,

two proposed MOR methods that are well suited for problems with singularities and discontinu-

ities are discussed in detail. An extension of the ISBFM technique to stationary crack problems

is investigated in Chapter 5. Chapter 6 addresses the application of the proposed MOR methods

to two dimensional linear elastic fracture mechanics. The error estimation as well as stability and

complexity analyses of the two proposed reduced systems are presented in Chapter 7, and numer-

ical examples along with discussions are provided to illustrate the effectiveness of the proposed

methods. Finally, a summary of this work and concluding remarks are given in Chapter 8.
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Chapter 2

Literature Review

2.1 Review of Meshfree Methods

2.1.1 Background

Meshfree methods offer purely node-based approximations and discretizations for solving bound-

ary value problems. The domain of interest is discretized completely by nodes, and the methods do

not rely on an interconnected mesh. In mesh-based methods like the finite element method (FEM),

mesh distortion may occur when the material undergoes large deformation due to the topology

of the discretization and the connectivity between nodes. Meshfree methods offer flexibility for

the nodal distribution and only use nodal information for the approximation. The methods have

efficiently been applied to problems where FEM encounters difficulty, such as simulation of crack

growth, strain localization problems, and large deformation analysis, among others.

Meshfree methods were first introduced in 1977 by Lucy [Lucy, 1977] and by Gingold and

Monaghan [Gingold and Monaghan, 1977], who presented the smooth particle hydrodynamics

(SPH) for applications in astrophysics. Gingold and Monaghan presented SPH as a kernel esti-

mate, which now characterizes most particle methods. However, SPH approximations encounter

difficulty in the treatment of boundary conditions and lacks of stability. Methods have then been
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developed to improve its accuracy and efficiency as well [Libersky and Petschek, 1991] [Randles

and Libersky, 1996].

Lancaster and Salkauskas [Lancaster and Salkauskas, 1981] proposed interpolants constructed

by moving least squares (MLS), that were later introduced by Nayroles et al. [Nayroles et al.,

1992] in the diffuse element method (DEM) for solving partial differential equations (PDEs). The

EFG method was proposed by Belytschko et al. [Belytschko et al., 1994] [Lu et al., 1994], as a

modification of DEM, which used the real derivatives in MLS, and performed a study on the choice

of the weight functions in MLS for solving PDEs.

Melenk and Babuška developed the partition of unity method (PUM) [Melenk and Babuška,

1996], which provides global conforming finite element approximation spaces for any order of

regularity. The PUM was applied to rough problems [Babuška and Melenk, 1997], for which the

local singular behavior of the solution is embedded in the construction of the PUM approximation

space.

Liu et al. [Liu et al., 1995b] introduced RKPM, an approximation method based on the correc-

tion of kernel estimates that ensures polynomial reproducing conditions. The application of RKPM

is quite extensive in the solid mechanics field. Chen et al. proposed an RKPM formulation to large

deformation problems including hyper-elasticity and plasticity [Chen et al., 1996] [Chen et al.,

1997] [Chen et al., 1998] as well as fragment impact problems [Guan et al., 2011]. The method

was also extended to nearly incompressible problems [Chen et al., 2000] and structural dynamics

[Liu et al., 1995a]. As a typical example of meshfree methods, the RKPM formulation will be used

for the remainder of this dissertation, and is discussed in detail in the following section.
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2.1.2 Reproducing Kernel Particle Method

The reproducing kernel (RK) approximation of a function u , denoted as uh , is expressed in (2.1)

as a linear combination of N RK shape functions as follows

uh(x) =
N∑
i=1

Ψi(x)di =
N∑
i=1

C (x;x− xi) Φa

(
‖x− xi‖

a

)
di (2.1)

where xi are the nodal coordinates of each of the N particles, di are nodal coefficients and Ψi

are the RK shape functions composed of a compactly supported kernel Φa multiplied by a cor-

rection function C . The compact support of the kernel function provides locality to the shape

functions. In this manner, the shape function associated with a node is in interaction with only a

small group of neighboring nodes. This provides computational efficiency in the construction of

the shape function as well as better conditioning in the linear system associated with the function

approximation.

The kernel function Φa also determines the order of continuity of the RK shape function. The

cubic-B splines and quintic-B splines, defined respectively as

Φa(z) =


1− 6z2 + 6z3, 0 ≤ z < 1

2

2(1− z)3, 1
2
≤ z < 1

0, z ≥ 1

(2.2)

and

Φa(z) =



1− 90
11
z2 + 405

11
z4 − 405

11
z5, 0 ≤ z < 1

3

17
22

+ 75
22
z − 315

11
z2 + 675

11
z3 − 1215

22
z4 + 405

22
z5, 1

3
≤ z < 2

3

−81
22

(z − 1)5, 2
3
≤ z < 1

0, z ≥ 1

(2.3)

are commonly used as kernel functions, where z = ‖x − xi‖/a, xi is the nodal coordinates, a is
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Figure 2.1: Cubic-B spline kernel function

the support size of the function. In this dissertation, the cubic-B spline, which isC2 continuous and

shown in Figure 2.1 for illustration, is employed as the kernel function in the RK approximation.

The correction function C , defined as

C(x;x− xi) =
∑
|α|≤n

(x− xi)αbα(x) = HT(x− xi)b(x) (2.4)

where monomials up to degree n are used as bases, i.e. HT(x) = [xα]|α|≤n , is introduced to the

shape function in order to impose the order of completeness in the approximation. The coefficient

vector b is obtained by satisfying the following reproducing conditions

N∑
i=1

C (x;x− xi) Φa

(
‖x− xi‖

a

)
xαi = xα, |α| ≤ n (2.5)
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The above can also be written as

N∑
i=1

C(x;x− xi)Φa

(
‖x− xi‖

a

)
(x− xi)α = δ|α|,0, |α| ≤ n (2.6)

which leads to

N∑
i=1

H(x− xi)HT(x− xi)Φa

(
‖x− xi‖

a

)
b(x) = H(0) (2.7)

Using (2.7), the coefficient vector is obtained by

b(x) = M−1(x)H(0) (2.8)

where

M(x) =
N∑
i=1

H(x− xi)HT(x− xi)Φa

(
‖x− xi‖

a

)
(2.9)

is the moment matrix. The construction allows the RK approximation to exactly reproduce mono-

mials up to degree n and therefore the partition of unity property holds. The RK shape functions

and uh are then obtained as

Ψi(x) = HT(0)M−1(x)H(x− xi)Φa

(
‖x− xi‖

a

)
(2.10)

uh(x) =
N∑
i=1

HT(0)M−1(x)H(x− xi)Φa

(
‖x− xi‖

a

)
di (2.11)

It should be noted that the RK approximation is not an interpolation function, and the RK shape

functions do not possess the Kronecker delta property, i.e.,

Ψi(xj) 6= δij (2.12)

Therefore, the imposition of essential boundary conditions while solving boundary value problems
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needs particular attention. Techniques that force the shape function to satisfy the nodal interpola-

tion property have been proposed, such as boundary singular kernel (BSK) [Chen and Wang, 2000]

[Chen et al., 2003]. The coupling of RK shape functions with finite elements [Fernández-Méndez

and Huerta, 2004] has also been developed to recover the Kronecker delta property at essential

boundary nodes. Furthermore, transformation methods [Chen et al., 1996] [Chen and Wang, 2000]

have been derived to express the nodal coefficient di in terms of the value of the RK shape func-

tion Ψi at the nodes, which eases the imposition of the kinematic constraints. Other techniques

are based on a modification of the weak formulation [Fernández-Méndez and Huerta, 2004]. The

essential boundary conditions can be weakly imposed using the penalty method [Zhu and Atluri,

1998], Nitsche’s method [Nitsche, 1971] or the Lagrange multipliers method [Belytschko et al.,

1994].

2.1.3 Numerical Treatments of Singularities and Cracks

Engineering problems with local features and singularities are difficult to solve numerically due

to the roughness of the solution. Smooth approximations such as FEM and RKPM are based

on recovering polynomial completeness; therefore accuracy improvement can only be made by

adaptive refinements in the vicinity of the singularity [Krysl and Belytschko, 1997]. However, the

remeshing process in FEM can be quite cumbersome and can result to additional error as the crack

propagates. Alternatively, enrichment functions that represent the local singular characteristics

of the solution are commonly introduced in the approximation for enhanced accuracy [Li et al.,

1987] [Li and Lu, 2000] [Fries and Belytschko, 2010]. Various enriched approximation methods

have been proposed to solve problems with singularities and discontinuities, such as the extended

finite element method (XFEM) [Belytschko and Black, 1999] [Moës et al., 1999] [Fries, 2008],

the enriched EFG [Belytschko et al., 1995a] [Belytschko et al., 1995b] [Fleming et al., 1997]

[Belytschko and Fleming, 1999] and the enriched radial basis collocation method (RBCM) [Wang

et al., 2010].
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In order to approximate a non-smooth solution, the approximation space can be enriched by

shape functions that represent the singular behavior. Enriched methods utilize a prior knowledge

of the asymptotic solution near the singularity to select adequate singular functions, which makes

them more efficient than refinement techniques. The additional functions can be added in the basis

vector already composed of monomials that is used to construct the approximation space. This

technique, termed intrinsic enrichment, was presented by Fleming et al. for the study of crack

propagation [Fleming et al., 1997]. In this manner, no additional degrees of freedom are needed.

However, when using intrinsic enrichment over the whole domain, the bases can be rapidly linearly

dependent when evaluated away from the singularity point. Blending techniques were proposed to

localize the enrichment to a subdomain surrounding the singularity and avoid ill-conditioning of

the moment matrix in the construction of the shape functions [Belytschko et al., 1996a].

Enrichment functions can also be extrinsically added to the smooth approximation. With ex-

trinsic enrichments, the numerical solution is approximated by a linear combination of a smooth

approximation with shape functions such as RK shape functions for instance, and a non-smooth

component obtained using the enrichment functions. However, the extrinsic enrichment functions

result in additional degrees of freedom, which increases the size of the discrete system.

Enrichment techniques can either be employed in the whole domain or be localized by means

of blending. Multiplying singular functions by blending functions introduces additional degrees

of freedom and modifies the overall enrichment that can lead to a deterioration of the accuracy

and the convergence rate [Chessa et al., 2003] [Fries, 2008]. Additional parameters must be de-

termined such as the size of the enriched subdomain and the type of blending functions. The

global enrichments are not polluted by blending functions, which leads to a better approximation

of the non-smooth behavior of the solution, however it requires a special treatment of boundary

conditions away from the singularity point.

In fracture mechanics, the geometric representation of the crack surface must be addressed.

Belytschko et al. [Belytschko et al., 1994] proposed an EFG formulation to model discontinuities

by truncating the support of the shape function along the crack surface. This technique, called the
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visibility criterion [Belytschko et al., 1996b], however creates artificial discontinuities of the shape

functions near the crack tip. Organ et al. [Organ et al., 1996] proposed to fix this defect with the

diffraction criterion for non-convex boundaries. The crack surface can also be represented using

the Heaviside function as an enrichment of the meshfree approximation.

In this dissertation, RKPM with global extrinsic enrichment bases will define the approxima-

tion space for solving singularity problems.

2.2 Review of Model Order Reduction

2.2.1 Background

The MOR methods have been developed to reduce the computational costs of solving large-scale

systems. They project an original approximation space onto a smaller subspace, and have been

developed in the context of linear dynamical systems [Antoulas and Sorensen, 2001]. These meth-

ods can be classified in two types that are formulated with either an approximation in the time

domain or an approximation in the frequency domain. Methods based on singular value decom-

position (SVD) such as the proper orthogonal decomposition (POD) [Everson and Sirovich, 1995]

[Chatterjee, 2000] and the balanced truncation method [Moore, 1981] [Lall et al., 2002] introduce

a projection onto dominant eigenspaces in the time domain. Moment-matching MOR methods,

such as the Krylov subspace method [Boley, 1994] [Grimme, 1997] [Cullum and Zhang, 2002],

provide an approximation of the transfer function of the discrete system in the frequency domain.

The moment-matching methods require less numbers of operations than the SVD ones but do not

preserve the stability of the system, which is a fundamental characteristic used in control theory.

Most of the applications and recent developments are done in the domain of circuit design,

computational fluid dynamics, control design, and structural dynamics [Schilders et al., 2008].

While MOR methods are well developed for dynamic fields, repeated analysis of static problems

such as singularity problems under various loading conditions leads to significant computation
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efforts, and could benefit from the application of reduced techniques.

2.2.2 SVD-based MOR Methods

The SVD-based MOR methods rely on eigenvector analysis to provide an approximation of the

original system. The reduced projection is constructed from eigenmodes obtained from collected

samples of the solution, or input and output variables at different times.

A great number of these analyses are based on the POD method, first introduced by Kosambi

[Kosambi, 1943] and further developed by Loève [Loève, 1945] in probability theory. The POD

method determines the optimal lower rank approximation of a discrete system by constructing a

projection onto its dominant states. For the reconstruction of partial image, Everson and Sirovich

[Everson and Sirovich, 1995] proposed the snapshot POD method that constructs the subspace of

the reduced model based on data collected by snapshots or samples of the solution. The SVD of

the correlation matrix of the snapshots indicates the dominant POD modes that will be preserved

during the reduction process. This technique has been introduced by Lumley [Lumley, 1967]

for the study of turbulence and further explored in the field of fluid mechanics by Holmes et al.

[Holmes et al., 1998]. It is widely applied to signal analysis, data compression and pattern recog-

nition [Kirby and Sirovich, 1990], to extract principal features of a system from the collection of

experimental data. The POD method has also been applied to the analysis of structural vibrations

and micro-electromechanical systems (MEMS) [Hung and Senturia, 1999], to nonlinear ordinary

differential equations (ODEs) [Rathinam and Petzold, 2003] and recently to damage mechanics

problems [Kerfriden et al., 2012]. The method of snapshots requires further investigation. First

the sampling of the snapshots is to be properly determined; otherwise the resulting reduced model

might not reflect the essential behavior of the original model. The states and phenomena that are

not represented by the set of snapshots cannot be represented by the reduced system; indeed the

approximation constructed by the POD method may vary a lot depending on the given snapshots.

Also, the number of POD modes to be chosen for the low rank approximation also strongly affects
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the accuracy of the reduced model.

The balanced truncation method is another commonly used SVD-based MOR method, intro-

duced by Willcox and Peraire [Willcox and Peraire, 2002] in the discipline of computational fluid

dynamics. It does not use direct snapshots of the original solution of the system but rather iden-

tifies the interaction between input, state and output variables to generate relevant modes that are

then used to construct the projection. The original system is transformed such that the truncated

states truncated are the ones that are least influenced by the inputs and have also less influence on

the outputs. The balanced truncation method retains only certain states in the representation of

the original model and an error bound is available for the reduced approximation. The controlla-

bility and observability gramians of a system, that respectively identify the state the relationship

between input to the state variables and state to the output variables are discretized using samples

of input and corresponding output variables from numerical simulations. The balanced truncation

method computes a balancing transformation of lower-rank empirical gramian matrices, which are

constructed by the POD method of snapshots.

2.2.3 Moment-Matching MOR Methods

Moment matching methods are used in the context of MOR to compute a projection of the high-

dimensional space onto a much smaller space while satisfying a moment matching condition in

the frequency domain. The moment matching condition states that the Taylor expansions of the

transfer functions of the original and the reduced systems are equals up to a certain order.

Under the framework of moment-matching MOR methods, Padé [Padé, 1899] introduced a

function approximation, later called the Padé approximant. This approximant is constructed based

on a ratio of two polynomials by matching the moments of the Taylor expansions of both the origi-

nal and the approximated rational functions. The asymptotic waveform evaluation (AWE) method,

developed by Pillage and Rohrer [Pillage and Rohrer, 1990] for circuit simulations, introduces the

Padé approximation for the transfer function of the reduced system satisfying the moment match-
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ing condition. The transfer function is defined as a ratio of the Laplace transform of the input

over the Laplace transform of the output. The Padé approximation of the transfer function is con-

structed in a two-step process. The moments of the original system are first evaluated, and the

numerator and denominator parameters of the reduced system are chosen so that the moments of

the reduced-order system equal those of the original system. This method involves solving a linear

system of equations involving Hankel matrix. Taking the inverse Laplace transform of the Padé

approximant, the transfer function in time domain from the reduced solution is obtained and the

reduced approximation can be deduced. However, solving for an explicit representation of the

approximated transfer function of large-scale systems often exhibits numerical instabilities. To

resolve this issue, techniques have been developed that provide a reduced model satisfying the

moment-matching condition implicitly.

In the early 50’s, Lanczos and Arnoldi algorithms were introduced to iterative methods for

computing eigenvalues and eigenvectors. Lanczos [Lanczos, 1950] contributed to the computation

of eigenvalues of symmetric matrices by providing a matrix reduction to tri-diagonal form. Arnoldi

[Arnoldi, 1951] provided an algorithm to reduce non-symmetric matrices to an upper Hessenberg

form. Both algorithms can be applied for MOR purposes. Gallivan et al. [Gallivan et al., 1994]

proposed to satisfy the moment-matching condition using Lanczos algorithm without having to

explicitly compute the moments. This method employs the Krylov subspace approach that was

first introduced in the context of eigenvalue estimations. The Krylov methods are also very effi-

cient as there is no need to computed the moments or evaluate the transfer function of the original

model and do not encounter the same instability issues as AWE methods. The projection matrix

is constructed from the original system matrices and can be directly used to express the reduced

system. The moment matching condition can also be introduced for the Taylor expansion at multi-

ple points by the multipoint moment matching MOR methods [Elfadel and Ling, 1997]. However

as these methods are local in nature, and their global error bounds are difficult to derive. Recent

studies have been conducted to preserve the stability and the passivity of the original system in the

moment-matching methods.
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The iterative Krylov methods encounter ill-conditioning type instability as the size of the re-

duced system increases. The round off error increases in the Gram-Schmidt procedure used for the

construction of orthonormal basis vector but can be fixed by re-orthogonalization techniques. Feld-

mann and Freund [Feldmann and Freund, 1995] introduced the Padé via Lanczos (PVL) method, in

the domain of circuit simulation. A Padé approximant is calculated by means of a two-sided Lanc-

zos algorithm, which improves the efficiency and the stability of the procedure. The Lanczos and

Arnoldi procedures were also improved by Lehoucq and Sorensen [Calvetti et al., 1994] [Lehoucq

and Sorensen, 1996] by introducing an implicit restarting approach that enhances computational

and data storage efficiency. Applications of Krylov methods to second order systems and nonlinear

ODEs [Bai et al., 1999] [Bai and Su, 2005] [Salimbahrami and Lohmann, 2006] have also been

examined in the past decade.
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Chapter 3

Meshfree ISBFM Galerkin Formulation for

Poisson Problems with Singularities

3.1 Preliminaries

In this chapter, the characteristics of Poisson problems with singularities are first introduced. The

treatments of numerical methods by enrichment of near-tip asymptotic functions and the associ-

ated numerical integration of the singular enrichment functions in the Galerkin formulation are

discussed. The resulting ISBFM Galerkin meshfree approximation serves as the full scale base

model for the proposed MOR methods presented in Chapter 4.

3.1.1 Model Problem

We consider Poisson problems with singularities induced by the non-smooth boundary in the non-

convex domain and the discontinuities in the boundary conditions. For demonstration purpose,
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Figure 3.1: Model of general singularity problem

consider the following boundary value problem

∆u = 0 in Ω, (3.1a)

u = g on Γg, (3.1b)

∇u · n = h on Γh (3.1c)

where ∆ = ∇ ·∇, Ω is a bounded concave domain with boundary ∂Ω = Γ = Γg ∪ Γh, the vector

n is the outward normal of ∂Ω, and g and h are smooth functions.

In Figure 3.1, there is a singularity in the derivative of the solution at point S when Θ > π.

The order of singularity is also affected by the angle Θ as well as the type of boundary conditions

on the two boundaries Γs1 and Γs2 connected to the point S and we denote Γs = Γs1 ∪ Γs2. Two

combinations of boundary conditions on Γs1 and Γs2 are considered: pure Dirichlet (D-D) and

mixed Neumann and Dirichlet (N-D) boundary conditions. The harmonic solution of problem in

(3.1) can be derived by means of the method of separation of variable [Li et al., 2005], and they

have been used as the enrichment functions in numerical solution of singularity problems.

For simplicity, we consider the case of homogeneous boundary conditions on the adjacent

boundaries associated with the point S; i.e. g = 0 on Γg ∪ Γs and h = 0 on Γh ∪ Γs. The
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Figure 3.2: Different types of geometric singularities

Table 3.1: Order of singularity for harmonic solutions of problems with D-D or N-D types of
boundary conditions

(1) Θ = π (2) Θ = 3π
2

(3) Θ = 2π

D-D Type O(r) O(r
2
3 ) O(r

1
2 )

N-D Type O(r
1
2 ) O(r

1
3 ) O(r

1
4 )

forms of the solution for different singularity problems, presented in Figure 3.2, are summarized

in Table 3.1 below, wherein r is the distance between any point in the domain and the singularity

point.

It can be observed from Table 3.1 that the strongest singularity occurred when angle Θ = 2π

and N-D boundary conditions are imposed, which corresponds to the edge crack Poisson problem.

In the L-shaped domain Poisson problem [Igarashi and Honma, 1996], with a concave angle Θ =

3/2π, a singularity weaker than that in the edge crack Poisson problem is observed, with either

D-D or N-D types of boundary conditions. Furthermore, the edge crack Poisson problem with D-

D boundary conditions has the same order of singularity as its equivalent symmetric problem [Lu

et al., 2004] with Θ = π, and subjected to N-D boundary conditions. The edge crack and L-shaped

domain Poisson problems are commonly selected as model problems to show the effectiveness of

numerical methods [Li et al., 2008]. In Chapter 4, we choose L-shaped domain and edge crack

Poisson problems as models to test our proposed MOR approaches.

Since the solution of problem in (3.1) has the asymptotic behavior u = O (rα), where 0 < α ≤
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1, the convergence rate of the numerical solution is reduced when standard meshbased or meshfree

methods are used for the approximation. Increasing the order of the approximate solution does not

help to enhance the convergence and additional techniques are needed to improve the effective-

ness of the numerical solution. Those treatments of the numerical approximation, including the

enrichment methods that will be used in our development, are described in the following section.

3.1.2 Numerical Treatments of Singularities

Different treatments of the numerical approximation, such as very high adaptive refinement near

the singularity point or adding a similar singularity behavior to the approximation space by the

means of enrichments, were investigated in order to improve the accuracy of the solution [Li and

Lu, 2000]. In this work, the refinement techniques are avoided and instead, the approximation

space is enriched by adding particular shape functions that represent the singularity behavior of

the derivative of the solution [Fries and Belytschko, 2010]. Enrichment methods require a prior

knowledge of the asymptotic expansion of the solution near the singularity,

u(x) =
∞∑
i=1

aiFi(x), as x→ xs (3.2)

where Fi are singular functions and xs the coordinates of the singularity point. The singular

functions, used as enrichments, are commonly obtained from the basis function of the analytical

asymptotic solution near the singularity point. The corresponding enrichment functions for the

singularity problems presented in Table 3.1 are given in Table 3.2 [Li et al., 2005].

In this work, global enrichments are employed, however this technique requires a special treat-

ment of the boundary conditions away from the singularity. It is worth noting that whenever

enrichment functions are used in the approximation, high order quadrature rules are needed for the

integration cells near the singularity point, which lead to high computational costs. The Integrated

Singular Basis Function Method (ISBFM) proposed by Georgiou et al. [Georgiou et al., 1997]

[Olson et al., 1991] [Elliotis et al., 2005], is introduced to obtain a Galerkin formulation, in which
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Table 3.2: Enrichments functions Fi, i = 1, 2, . . .

Fi αi

D-D Type rαi sin (αiθ)
(i− 1)π

Θ

N-D Type rαi cos (αiθ)
(i− 1/2)π

Θ

the enrichment basis functions do not need to be integrated on the domain and on boundaries near

the singularity point. The detailed formulation of this ISBFM Galerkin formulation is given in the

next section.

3.2 Integrated Singular Boundary Function Method (ISBFM)

In this section, the ISBFM Galerkin formulation modified with Nitsche’s method for singularity

problems as well as the enriched RK approximation will be introduced. The reproducing kernel

approximation for the smooth part of the solution in singularity problems will also be reviewed.

These basic formulations constitute the framework for the construction of the full model for the

proposed reduced order formulation to be discussed in Chapter 4.

3.2.1 Background

ISBFM [Georgiou et al., 1996] was first introduced to embed the asymptotic solution of the Laplace

equation, where the enrichment functions were selected from the leading terms of the singular local

solutions of the problem, while the smooth part of the solution was approximated by standard FEM.

In this approach, the selected enrichment functions satisfy the governing differential equation and

the boundary conditions near the singularity points, the Galerkin formulation can be expressed

such that the non-smooth approximation does not appear in integrals near the singularity. As such,

high order integration of the domain integrals near the singularity points can be avoided to yield

20



improved solution accuracy.

3.2.2 ISBFM Galerkin Formulation

The functional associated with the model problem in (3.1) is

I =
1

2

∫
Ω

∇u ·∇u dΩ−
∫

Γh

uh dΓ (3.3)

where u ∈ H1+α(Ω) to account for the singularity in the geometry. Let the approximation of u,

denoted as uh, be decomposed into a smooth part ūh and a non-smooth part ûh which is regarded

as the enrichment of the standard smooth solution ūh as

uh = ūh + ûh (3.4)

Here, a RK approximation, detailed in Chapter 2, is considered for the smooth solution, while the

local asymptotic functions given in Section 3.1.2 are employed for the singular part of the solution

and these will be discussed further in Section 3.2.3.

The functional (3.3) is modified for imposition of the essential boundary condition on Γg using

Nitsche’s method [Nitsche, 1971] [Fernández-Méndez and Huerta, 2004], it becomes

I =
1

2

∫
Ω

∇(ūh + ûh) ·∇(ūh + ûh) dΩ−
∫

Γh

(ūh + ûh)h dΓ

−
∫

Γg

∇(ūh + ûh) · n(ūh + ûh − g) dΓ +
β

2

∫
Γg

(ūh + ûh − g)(ūh + ûh − g) dΓ

(3.5)

Compared to (3.3), the additional integrals corresponding to boundary integrals on Γg are due

to Nitsche’s formulation for enforcement of essential boundary conditions, and β is a penalty

parameter. Minimizing the functional (3.5) leads to a standard Galerkin formulation associated
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with the smooth and non-smooth approximations as follows

∫
Ω

∇δūh ·∇(ūh + ûh) dΩ

−
∫

Γg

(
δūh

(
∇(ūh + ûh) · n− β

(
ūh + ûh

))
+ ∇δūh · n

(
ūh + ûh

))
dΓ

=

∫
Γh

δūhh dΓ−
∫

Γg

(
−δūhβg + ∇δūh · ng

)
dΓ

(3.6a)

∫
Ω

∇δûh ·∇(ūh + ûh) dΩ

−
∫

Γg

(
δûh

(
∇(ūh + ûh) · n− β

(
ūh + ûh

))
+ ∇δûh · n

(
ūh + ûh

))
dΓ

=

∫
Γh

δûhh dΓ−
∫

Γg

(
−δûhβg + ∇δûh · ng

)
dΓ

(3.6b)

If the basis functions for the non-smooth part of the solution ûh are harmonic, i.e. ∆ûh = 0, the

domain integral involving ûh can be expressed as a boundary integral by applying the integration

by parts method, which reduces as follow

∫
Ω

∇v ·∇ûh dΩ =

∫
Γ

v∇ûh · n dΓ, ∀v ∈ V (3.7)

Consequently, equations (3.6a) and (3.6b) become

∫
Ω

∇δūh ·∇ūh dΩ +

∫
Γ

δūh∇ûh · n dΓ

−
∫

Γg

(
δūh

(
∇(ūh + ûh) · n− β

(
ūh + ûh

))
+ ∇δūh · n

(
ūh + ûh

))
dΓ

=

∫
Γh

δūhh dΓ−
∫

Γg

(
−δūhβg + ∇δūh · ng

)
dΓ

(3.8a)

∫
Ω

∇δûh ·∇ūh dΩ +

∫
Γ

δûh∇ûh · n dΓ

−
∫

Γg

(
δûh

(
∇(ūh + ûh) · n− β

(
ūh + ûh

))
+ ∇δûh · n

(
ūh + ûh

))
dΓ

=

∫
Γh

δûhh dΓ−
∫

Γg

(
−δûhβg + ∇δûh · ng

)
dΓ

(3.8b)
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The requirement of harmonic property in the enrichment bases in ûh allows the replacement

of the domain integral by a boundary integral in (3.8b). With the consideration of taking the

leading terms of the asymptotic solution as the enrichment basis functions for ûh, it enables both

trial and test functions of the enriched non-smooth part of the numerical solution to satisfy the

homogeneous boundary conditions on Γs. Define Γ̄h = Γh \ Γs and Γ̄g = Γg \ Γs, the ISBFM

Galerkin formulation (3.8) can be expressed as follows

∫
Ω

∇δūh ·∇ūh dΩ−
∫

Γg

(
δūh

(
∇ūh · n− βūh

)
+ ∇δūh · nūh

)
dΓ

+

∫
Γ̄h

δūh∇ûh · n dΓ−
∫

Γ̄g

(
−δūhβûh + ∇δūh · nûh

)
dΓ

=

∫
Γ̄h

δūhh dΓ−
∫

Γ̄g

(
−δūhβg + ∇δūh · ng

)
dΓ

(3.9a)

∫
Γ̄h

∇δûh · nūh dΓ−
∫

Γ̄g

δûh
(
∇ūh · n− βūh

)
dΓ

+

∫
Γ̄h

δûh∇ûh · n dΓ−
∫

Γ̄g

(
−δûhβûh + ∇δûh · nûh

)
dΓ

=

∫
Γ̄h

δûhh dΓ−
∫

Γ̄g

(
−δûhβg + ∇δûh · ng

)
dΓ

(3.9b)

In the above, the enrichment function ûh only appears on boundaries, which are away from the

singularity point S where the bases functions for ûh can be smooth as will be discussed in the next

sub-section. As such, the ISBFM Galerkin formulation in (3.9) can be numerically integrated using

lower order quadrature than compared to a standard Galerkin formulation in (3.6). A comparison

of the standard and ISBFM Galerkin formulations using different order of Gaussian quadrature

rules will be presented in Section 3.3.

Remark 3.1. The ISBFM Galerkin formulation can be obtained if the enrichment basis functions

based on the local expansion bases of the solution can be derived. Those bases allow the simplifi-

cation of some integral terms after integration by parts in the weak formulation.

Remark 3.2. Compared to a standard Galerkin formulation, the domain integral and the bound-
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ary integrals near the singularity point in the ISBFM formulation only contain the smooth approx-

imation and can be numerically calculated with a significantly lower order quadrature rule for

desired accuracy. Under the ISBFM formulation, the enrichment basis functions for ûh appear in

boundary integrals away from the singularity point where those bases are much smoother, thus the

quadrature order for the numerical integration of those terms can also be reduced.

3.2.3 Discretization of ISBFM Galerkin Formulation

Smooth approximation functions are unable to recover the solution of a singularity problem with-

out special treatments, as described in the previous chapter, and adaptive refinement of the node

distribution in the vicinity of a singularity can be very computationally expensive. For computa-

tional efficiency, enrichment functions may be added to the approximation based on the known

local singular behavior, such as those derived from asymptotic expansion.

The RK approximation, presented in details in Chapter 2, is used as the approximation of the

smooth part of the solution ūh in (3.4). The RK approximation of a function ū , denoted as ūh , is

expressed in (3.10) as a linear combination of N̄ RK shape functions Ψi as follows

ūh(x) =
N̄∑
i=1

Ψi(x)d̄i = ΨT(x)d̄ (3.10)

where d̄ ∈ RN̄×1 is the coefficient vector for the smooth part.

The approximation of the non-smooth part of the solution ûh in (3.4) is constructed by a linear

combination of enrichment functions F as follows

ûh(x) =
N̂∑
i=1

Fi(x)d̂i = F T(x)d̂ (3.11)

where N̂ is the number of enrichment functions Fi as discussed in Section 3.1.2 and d̂ ∈ RN̂×1 is

the coefficient vector for the non-smooth part.

The discretization of ISBFM Galerkin formulation defined in (3.9) can be written in a matrix
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form as follows

Kd =

 K̄ “K

“KT K̂


d̄
d̂

 =

f̄
f̂

 = f (3.12)

The stiffness matrixK ∈ RN×N is a positive definite matrix, where N = N̄ + N̂ . The sub-matrix

K̄ ∈ RN̄×N̄ is a sparse matrix, “K ∈ RN̄×N̂ and K̂ ∈ RN̂×N̂ are the other sub-matrices from (3.9).

The entries of those matrices are given by

K̄ij =

∫
Ω

∇Ψi ·∇Ψj dΩ−
∫

Γg

(Ψi∇Ψj · n+ ∇Ψi · nΨj) dΓ + β

∫
Γg

ΨiΨj dΓ (3.13)

K̂ij =

∫
Γ̄h

Fi∇Fj · n dΓ−
∫

Γ̄g

∇Fi · nFj dΓ + β

∫
Γ̄g

FiFj dΓ (3.14)

and

“Kij =

∫
Γ̄h

Ψi∇Fj · n dΓ−
∫

Γ̄g

∇Ψi · nFj dΓ + β

∫
Γ̄g

ΨiFj dΓ (3.15)

The right hand side vector f ∈ RN×1 in (3.12) consists of two sub-vectors f̄ ∈ RN̄×1 and f̂ ∈

RN̂×1 defined as

f̄i =

∫
Γ̄h

Ψih dΓ−
∫

Γ̄g

(−Ψiβg + ∇Ψi · ng) dΓ (3.16)

f̂i =

∫
Γ̄h

Fih dΓ−
∫

Γ̄g

(−Fiβg + ∇Fi · ng) dΓ (3.17)

The discrete equation of ISBFM Galerkin formulation will be used to construct the MOR mod-

els in Chapter 4.

3.3 Numerical Example

The effectiveness of the ISBFM Galerkin method compared to a standard Galerkin method is tested

numerically for problem with singularity. In the following study, RK functions with linear basis

and cubic B-spline kernel function with a normalized support size of a = 1.51 are chosen for the

smooth part of the solution. The enrichment functions described in Section 3.1.2 are employed to
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Figure 3.3: Model of cracked beam Poisson problem

represent the singularities in the solution. For Nitsche’s treatment of essential boundary conditions,

β = 100/h is adopted, where h is the minimal spacing of the RK nodes.

To compare the approximated solutions obtained from standard Galerkin and ISBFM Galerkin

formulations, we study a two-dimensional cracked beam Poisson problem as shown in Figure 3.3

in which the discontinuity of boundary conditions at (0, 0) yields a singularity of order α = 1/2,

according to Table 3.1.

The problem statement of the cracked beam Poissonproblem is given as

∆u = 0 in Ω, (3.18a)

subjected to the boundary conditions,

u|y=0,−1/2≤x≤0 = 0, u|y=1/2,−1/2≤x≤1/2 = 0.125, (3.18b)

∂u

∂y
|y=0,0≤x≤1/2 = 0,

∂u

∂x
|x=1/2,0≤y≤1/2 = 0,

∂u

∂x
|x=−1/2,0≤y≤1/2 = 0 (3.18c)

where Ω = [−1/2, 1/2] × [0, 1/2]. The singular basis functions of this problem are chosen from
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Figure 3.4: Cracked beam Poisson problem’s enrichment functions Fi for i = 1, 2, 3, 4

the harmonic functions [Li et al., 2005]

Fi(r, θ) = r
2i−1

2 cos

(
2i− 1

2
θ

)
, i = 1, 2, . . . (3.19)

where r =
√

(x− x0)2 + (y − y0)2 and θ = tan−1 ((y − y0)/(x− x0)), which also satisfy the

homogeneous essential and natural boundary conditions on Γ1 and Γ2 adjacent to the singularity

point (x0, y0), respectively, see Figure 3.4.

For assessment of convergence, the relative errors in L2 and H1 norms are considered as fol-

lows

e0 =

∥∥u− uh∥∥
L2

‖u‖L2

, e1 =

∥∥u− uh∥∥
H1

‖u‖H1

(3.20)
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Figure 3.5: Exact solution of cracked beam Poisson problem

The exact solution u of the cracked beam Poisson problem is presented in Figure 3.5.

The solutions of standard Galerkin and ISBFM Galerkin formulations obtained by using a

48× 24 uniform discretization with one enrichment function (N̂ = 1) are shown in Figure 3.6 and

Figure 3.7, where different orders of Gaussian quadrature for the domain and boundary integrals

have been used. The results indicate that, for the same Gaussian quadrature, the solution from

ISBFM Galerkin formulation provides better accuracy in both L2 and H1 norms. The distributions

of the absolute errors of solutions in the domain are compared in Figure 3.8 where an 8th order

of Gaussian quadrature has been used in the Galerkin equations to properly integrate the singular

functions. The error from the standard Galerkin formulation is localized around the singularity

point and is much larger than the error from ISBFM Galerkin method.

The convergence plots of standard and ISBFM Galerkin formulations in relative L2 error norm

are shown in Figure 3.9 using different numbers of Gauss points (GP). The asymptotic rates of

convergence of the approximation are presented in Table 3.3. The ISBFM Galerkin formulation

improves the accuracy of the approximation and also its rate of convergence.
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Figure 3.6: Relative error in L2 norm of approximations of cracked beam Poisson problem under
different Galerkin formulations and different orders of Gaussian quadrature
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Figure 3.7: Relative error in H1 norm of approximations of cracked beam Poisson problem under
different Galerkin formulations and different orders of Gaussian quadrature
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Figure 3.9: Convergence plot in relative L2 error norm of standard and ISBFM Galerkin formula-
tions with different orders of Gaussian quadrature

Table 3.3: Rate of Convergence in L2 norm of standard and ISBFM Galerkin formulations with
different orders of Gaussian quadrature

Standard Galerkin ISBFM Galerkin
Orders of Gaussian Quadrature 2 4 8 12 2 4 8 12

Rate of Convergence 1.03 1.05 1.06 1.12 1.04 1.08 1.80 2.04

This cracked beam Poisson problem example demonstrates that ISBFM Galerkin method pro-

vides a more accurate approximation compared to the standard Galerkin method, and allows using

lower order Gaussian quadrature for problems with singularity. The approximated solution from

ISBFM Galerkin method is also better suited to the proposed MOR approaches, as the singular-

ity behavior is better preserved than that of a standard Galerkin formulation in the reduced order

space.
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Chapter 4

ISFBM Galerkin based MOR Method for

Poisson Problems with Singularities

4.1 Preliminaries

Two reduced order methods for Poisson problems with singularities are introduced in this chapter.

The MOR methods are constructed for their application to the fine scale solution obtained from

the ISBFM Galerkin formulation presented in Chapter 3. The following section will first introduce

the SVD based MOR method, which is the starting point of the proposed MOR approaches. The

reduced approximation methods are based on truncation of natural modes of the system and will

be described in detail in the remaining. The efficiency of the MOR methods is discussed in the

numerical examples presented at the end of this chapter.

4.1.1 Background

The SVD based MOR methods are methods based on eigenvector analysis. The POD method

identifies the correlation between the vectors of a given set of sampled solutions and provides the

modes, called POD modes, that represents this set of samples the best. The reduced approximation

is obtained from the linear combination of truncated POD modes. For MOR, the POD method
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usually constructs the reduced projection from POD modes based on collected snapshots of the

full solution at certain times.

The POD method is based on the assumption that there is a correlation between successive

snapshots of the original state vector; also one needs to select the snapshots in an appropriate way

to ensure a relevant approximation of the original system. For elliptic problem, the snapshots can

be replaced by eigenmodes of the system for the MOR by POD. After describing the SVD decom-

position and the POD method based on snapshots of the solution, a POD method that considers

eigenvectors of the stiffness matrix instead of snapshots is presented and serves as the starting point

for deriving the uniform and the decomposed reduction methods presented in Section 4.2.

4.1.2 Singular Value Decomposition

In linear algebra, different techniques have been developed for matrix decomposition [Golub and

van Van Loan, 1996] [Horn and Johnson, 2012]. SVD is a matrix diagonalization technique that

has been employed in various MOR methods to separate the dominant modes of a system from the

less important ones. The SVD of a matrixA ∈ RM×N of rank r is defined as follow

∀A ∈ RM×N , rank(A) = r ≤M ≤ N

∃(U ,V ,Σ) ∈ RM×M × RN×N × RM×N such thatA = UΣV T
(4.1)

where U ∈ RM×M and V ∈ RN×N are orthogonal matrices that represent respectively the left

and right singular matrices of A. Σ = diag(σ1 . . . σN) ∈ RM×N is a pseudo diagonal matrix,

composed of the singular values σ1 ≥ σi ≥ σN ≥ 0 of the matrix A. The singular values of A

are defined as σi =
√
λi, where λi are the eigenvalues of AAT, which are also the eigenvalues

of ATA. If the rank of A is r ≤ M ≤ N , then the Hankel singular value σi = 0 for i > r.

The columns of U and V are called respectively the left and right singular vectors of A, and are

respectively the orthonormal eigenvectors ofAAT andATA. The SVD is unique when the matrix

A is square.
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(a) k = 1 (b) k = 5 (c) k = 10

(d) k = 40 (e) k = 100 (f) Original

Figure 4.1: SVD decomposition of an image

The theorem of Schmidt-Mirsky states that

∀A ∈ RM×N , rank(A) = r ≤M ≤ N,

∃Ak ∈ {X ∈ RM×N , rank(X) = k ≤ r} such that

‖A−Ak‖F = min{‖A−X‖F : rank(X) = k ≤ r} = σk+1(A)

(4.2)

This theorem provides the existence of an optimal minimizer of rank k ≤ r that can be expressed

as Ak = Udiag(σ1 . . . σk0 . . . 0)V T in the Frobenius norm. The Frobenius norm for a matrix

X = (Xij)1<i<M,1<j<N is defined as

‖X‖F =

√√√√ M∑
i=1

N∑
j=1

|Xij|2 (4.3)

SVD method can be applied for image compression. An example is provided in Figure 4.1,

where the corresponding original image 4.1(f) can be represented as a matrix of dimension 499×

800 and rank r = 499, containing the intensity of each pixel. The SVD decomposition provides

lower rank approximations of this matrix. We can observe how the image is compressed using

different number k of singular values.
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This optimal minimizer feature of the SVD is well designed for MOR as it provides a lower

rank optimal approximation of a matrix. The idea of truncating the dominant states to obtain a

lower rank matrix approximation is driving the MOR methods by POD.

4.1.3 Proper Orthogonal Decomposition MOR

The POD method is a least square type approximation method, and it constructs a set of basis

vectors that represents the dominant characteristics of the system. The POD method constructs an

optimal projection Πk of a given set of data x(t) ∈ RN , where 0 < t < T , onto a subspace of

dimension k � N . The orthogonal projection Πk ∈ RN×N of rank k is obtained by minimizing

the error
∫ T

0
‖x(t)−Πkx(t)‖2 dt.

Snapshots obtained from experimental data have been used to compute the POD modes of the

system, which span the subspace of the projection. Define a set of Ns snapshots of the solution at

discrete times ts of a system. This set X =
√

1/Ns (x(t1) . . .x(tNs)) ∈ RN×Ns lies in a vector

space V of dimension Ns � N . The orthogonal projection Πk ∈ RN×N of rank k onto a subspace

Vk of dimension k � N is obtained such that it minimizes the error

1

Ns

Ns∑
s=1

‖x(ts)−Πkx(ts)‖2 (4.4)

which is equivalent to finding a basis {Φi}ki=1 that solves

min
{Φi}ki=1

Ns∑
s=1

∥∥∥∥∥x(ts)−
k∑
j=1

〈x(ts),Φj〉Φj

∥∥∥∥∥
2

subjected to 〈Φi,Φj〉 = δij (4.5)

where 〈·, ·〉 denotes the inner product in Euclidean space and ‖·‖ = 〈·, ·〉1/2 is the corresponding

norm. We have the following relation
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∥∥∥∥∥x(ts)−
k∑
j=1

〈x(ts),Φj〉Φj

∥∥∥∥∥
2

= 〈x(ts),x(ts)〉 − 2
k∑
j=1

〈x(ts),Φj〉〈x(ts),Φj〉

+
k∑
i=1

k∑
j=1

〈x(ts),Φi〉〈x(ts),Φj〉〈Φi,Φj〉

(4.6)

As 〈Φi,Φj〉 = δij , we obtain

∥∥∥∥∥x(ts)−
k∑
j=1

〈x(ts),Φj〉Φj

∥∥∥∥∥
2

= ‖x(ts)‖2 − 2
k∑
j=1

|〈x(ts),Φj〉|2 +
k∑
j=1

|〈x(ts),Φj〉|2

= ‖x(ts)‖2 −
k∑
j=1

|〈x(ts),Φj〉|2
(4.7)

From (4.7) and as the basis vectors Φj are orthonormal to each other, the minimization problem

in (4.5) is equivalent to

max
{Φi}ki=1

Ns∑
s=1

k∑
j=1

|〈x(ts),Φj〉|2 subjected to 〈Φi,Φj〉 = δij (4.8)

where | · | is the complex norm [Volkwein, 2001]. This optimization problem can be expressed as a

constrained variational formulation. Using Lagrange multipliers λij to impose the orthonormality

of the basis vectors, the corresponding Lagrange function is

L[{Φm}km=1, {λmn}km,n=1] =
Ns∑
s=1

k∑
j=1

|〈x(ts),Φj〉|2 −
k∑

i,j=1

λij (〈Φi,Φj〉 − δij) (4.9)

The stationary condition leads to the following conditions

∂L

∂Φm

= 0⇒ 2
Ns∑
s=1

k∑
j=1

〈x(ts),Φj〉δjmx(ts)−

(
k∑
j=1

λijδimΦT
j +

k∑
i=1

λijδjmΦT
i

)
= 0 (4.10a)

∂L

∂λmn
= 0⇒ 〈Φi,Φj〉 = δij (4.10b)
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which can be further reduced to

∂L

∂Φm

= 0⇒ 2
Ns∑
s=1

〈x(ts),Φm〉x(ts)−

(
k∑
j=1

λmjΦ
T
j +

k∑
i=1

λimΦT
i

)
= 0 (4.11a)

∂L

∂λmn
= 0⇒ 〈Φi,Φj〉 = δij (4.11b)

From (4.11a), it is shown by induction that λij = λiiδij , which leads that the basis {Φi}ki=1 that

solves (4.8) satisfies the following condition

∂L

∂Φm

= 0⇒
Ns∑
s=1

x(ts)〈x(ts),Φm〉 = λmmΦT
m (4.12a)

∂L

∂λmn
= 0⇒ 〈Φi,Φj〉 = δij (4.12b)

In (4.12a), we can recognize that Φm is an eigenvector of the autocorrelation matrixR ∈ RN×N

of rank r ≤ N of the data defined as

R =
1

Ns

Ns∑
s=1

x(ts)x(ts)
T = XXT (4.13)

The r orthonormal eigenvectors Φi of R are called the POD modes and correspond to the left

singular vectors obtained from the SVD of the snapshot matrix X . The POD modes satisfy both

conditions in (4.12). The proper selection of k POD modes will provide an optimal minimizer of

(4.4).

Define Pk = [Φ1Φ2 . . .Φk] ∈ RN×k from the POD modes Φi related to the k-th eigenvalues

λi ofR of largest magnitude. The error of the projection Πk ∈ RN×N of rank k < r ≤ N defined

as

Πk =
k∑
i=1

ΦiΦ
T
i = PkP

T
k (4.14)

is given as
1

Ns

Ns∑
s=1

‖x(ts)−Πkx(ts)‖2 =
r∑

j=k+1

λj (4.15)
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As λ1 ≥ λj ≥ λr ≥ 0, this projection provides the optimal minimizer of the error [Lall et al.,

2003].

4.1.4 Application to Linear Static System

Consider a discrete system

Kd = f (4.16)

where K ∈ RN×N , f ∈ RN×1 and d ∈ RN×1. When solving a linear system in (4.16), the coef-

ficient vector d can be expressed as a linear combination of eigenvectors of the flexibility matrix

K−1. A reduced projection can be constructed from the dominant SVD modes of the flexibility

matrix directly. Since K is symmetric positive definite, its SVD decomposition is equal to its

eigendecomposition. It results that the dominant SVD modes are the eigenvectors corresponding

to the largest singular values σi = 1/λi of K−1, where λ1 ≤ λi ≤ λN are the eigenvalues of K.

The reduced approximations proposed in the following are based on truncation of SVD modes of

the system for their application to elliptic problems with singularities.

4.2 Reduced Model

The full discrete system obtained from ISBFM Galerkin based enriched meshfree approximation

for problems with singularities, as derived in Chapter 3, will be the base secrete system for MOR.

Recall the discrete system (3.12) derived in Chapter 3 of dimension N = N̄ + N̂ as

Kd =

 K̄ “K

“KT K̂


d̄
d̂

 =

f̄
f̂

 = f (4.17)

The general form of a reduced order model of dimension k � N is given by

Krdr = f r (4.18)
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where k is called the order of reduction, Kr ∈ Rk×k denotes the reduced stiffness matrix, f r ∈

Rk×1 is the reduced force vector and dr ∈ Rk×1 is the reduced coefficient vector. The reduced

system is obtained from a projection of the full system. We denote the projection by P ∈ RN×k,

whose columns are orthonormal vectors and the coefficient vector d in (4.17) is approximated by

Pdr, i.e.,

d ≈ Pdr (4.19)

We will study two ways of forming the projection matrix using modal analysis.

The first MOR method introduces a uniform reduction (UR) of the fine scale discrete system

constructed from the ISBFM Galerkin formulation, termed ISBFM-UR, where the projection P is

applied to all degrees of freedom consisting of the smooth and non-smooth parts of the solution.

The reduced system is of the form

Kurdur = fur, Kur = P TKP , fur = P Tf (4.20)

where the superscript “ur” in (4.20) signifies the uniform reduction concept, dur ∈ Rk×1 is the

reduced coefficient vector, Kur ∈ Rk×k is the reduced stiffness matrix and fur ∈ Rk×1 is the

reduced force vector. The projection matrix P is constructed from the eigenvectors {φi}ki=1 cor-

responding to the k smallest eigenvalues λ1 ≤ λi ≤ λk of K, that is, P = [φ1φ2 . . .φk]. The

component of the reduced order coefficient vector is duri = φT
i f/λi, i = 1, . . . , k, and the approx-

imated solution is obtained by d ≈ Pdur.

The second MOR approach considers decomposed reduction (DR) from the fine scale sys-

tem via separate projections for the smooth and the non-smooth parts of the fine scale solution,

named ISBFM-DR. Under this approach, the reduced coefficient vector ddr ∈ Rk×1 constitutes

of a reduced coefficient vector for the smooth part d̄dr ∈ Rk̄×1 and a reduced coefficient vector

for the non-smooth part d̂dr ∈ Rk̂×1 that are obtained from a decomposed projection matrix with
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superscript “dr” denoting the decomposed reduction approach, given as

P̄ 0

0 P̂

 ∈ R(N̄+N̂)×(k̄+k̂) (4.21)

where P̄ ∈ RN̄×k̄ and P̂ ∈ RN̂×k̂ are the sub-projections for the smooth and the non-smooth parts

of the fine scale solution, respectively and the reduced dimension is k = k̄ + k̂, with k̄ ≤ N̄ and

k̂ ≤ N̂ . The corresponding reduced system is given below

P̄ T 0

0 P̂ T


 K̄ “K

“KT K̂


P̄ 0

0 P̂


d̄dr
d̂dr

 =

P̄ T 0

0 P̂ T


f̄
f̂

 (4.22)

We rewrite and denote above as follows

Kdrddr = f dr (4.23)

where

Kdr =

 K̄dr “Kdr

“KdrT K̂dr

 , ddr =

d̄dr
d̂dr

 , f dr =

f̄ dr
f̂ dr

 (4.24)

Here K̄dr = P̄ TK̄P̄ ∈ Rk̄×k̄, “Kdr = P̄ T “KP̂ ∈ Rk̄×k̂ and K̂dr = P̂ TK̂P̂ ∈ Rk̂×k̂ are the

sub-matrices of the reduced stiffness matrix Kdr, f̄ dr = P̄ T f̄ ∈ Rk̄×1 and f̂ dr = P̂ T f̂ ∈ Rk̂×1

are the sub-vectors of the reduced force vector f dr. Here we assume that sub-matrices K̂ and K̂dr

are nonsingular.

In ISBFM-DR, we first solve the coefficient vector of the smooth part and then compute the

reduced coefficient vector of the non-smooth part. Consider the following decomposition of the

fine scale equation in 4.17

K̄cd̄ = f̄ c, K̄c = K̄ − “KK̂−1 “KT, f̄ c = f̄ − “KK̂−1f̂ (4.25a)
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K̂d̂ = f̂ c, f̂ c = f̂ − “KTd̄ (4.25b)

The sub-projections matrices P̄ and P̂ in (4.21) are respectively obtained from the eigenanalysis

of K̄c and K̂ from the condensed fine scale system in (4.25). That is, P̄ = [ϕ1ϕ2 . . .ϕk̄] and

P̂ = [ξ1ξ2 . . . ξk̂] , where {ϕj, µj}k̄j=1 and {ξl, ηl}k̂l=1 are the smallest eigenpairs from matrices K̄c

and K̂, respectively. The reduced coefficient vectors are obtained as d̄drj = ϕT
j f̄

c/µj , j = 1, . . . , k̄

and d̂drl = ξT
l f̂

cdr/ηl, l = 1, . . . , k̂, where f̂ cdr = f̂ − “KTP̄ d̄dr. The approximation from the

reduced order solution is then obtained as dT ≈ [[P̄ d̄dr]T, [P̂ d̂dr]T].

Remark 4.1. If global enrichment is used, the number of non-smooth DOF is relatively small

compared to the number of smooth DOF. In this case one can consider to reduce only the smooth

coefficients of the solution only and keep the enriched DOF to be unprojected. That is, in the

ISBFM-DR method, the dimension k̂ = N̂ and P̂ = IN̂ . As a result, there is no projection of the

non-smooth DOF, and d̂dr ∈ RN̂×1 is obtained directly from K̂d̂ = f̂ cdr.

4.3 Numerical Examples and Discussions

In this section, we present numerical examples of Poisson problems with singularities to verify and

validate the proposed ISBFM-UR and ISBFM-DR MOR methods.

4.3.1 Reduced Order Modeling of a L-shaped Domain Poisson Problem

In the following example, the proposed ISBFM-UR and ISBFM-DR methods are considered for

the reduced order modeling of a Poisson problem with mild singularity. The ISBFM-DR method

is introduced with order reduction only on the smooth solution, and no order reduction on the

enriched solution, i.e. P̂ = IN̂ and k = k̄ + N̂ . From the definition of singularity problem in

Chapter 3, we understand that the Poisson problem on a L-shaped domain, shown in Figure 4.2,

contains a singularity of order α = 2/3.
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Figure 4.2: Model of L-shaped domain Poisson problem

The problem statement of this L-shaped domain Poisson problem is given as follows

∆u = 0 in Ω, (4.26a)

subjected to the boundary conditions,

u|x=0,−1≤y≤0 = 0, u|y=0,0≤x≤1 = 0, (4.26b)

∂u

∂y
|y=−1,−1≤x≤0 = 0,

∂u

∂x
|x=1,0≤y≤1 = 0,

∂u

∂y
|y=1,−1≤x≤1 = 50,

∂u

∂x
|x=−1,−1≤y≤1 = 50 (4.26c)

where Ω = [−1, 1] × [−1, 1] \ [0, 1] × [0, 1]. The harmonic functions shown below are used as

enrichment functions:

Fi(r, θ) = r
2
3
i sin

(
2

3
iθ

)
, i = 1, 2, . . . (4.27)

These enrichment functions, shown in Figure 4.3, satisfy the boundary conditions on Γ1 and on
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Figure 4.3: L-shaped domain Poisson problem’s enrichment functions Fi for i = 1, 2, 3, 4

Γ6 connected to the singularity point (x0, y0). In this numerical example, a uniform discretization

49×49 (N̄ = 1825) with one enrichment function (N̂ = 1) is used to obtain the fine scale solution.

The approximate solution of the fine scale model and its derivatives along y = 0.001 are shown

in Figure 4.4. A comparison of the absolute error along y = 0.001 between the fine scale solution

and the approximated reduced solutions obtained from ISBFM-UR and ISBFM-DR for a reduced

dimension k, with different percentage of reduction k/N = 5%, 10%, 20%, is presented in Figure

4.5. We first observe that ISBFM-UR approximates the fine scale solution poorly even when using

a reduced model that contains 20% of the full DOF. On the other hand, the reduced order solution

from ISBFM-DR yields a much smaller error, especially in the derivatives of the solution, where

the error near the singularity points is not predominant.
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Figure 4.5: Absolute error distribution of the reduced solutions for the L-shaped domain Poisson
problem with different percentage of k/N along y = 0.001
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Figure 4.6: Model of cracked beam Poisson problem with prescribed traction

4.3.2 Reduced Order Modeling of a Cracked Beam Poisson Problem

The cracked beam Poisson problem with prescribed traction, described in Figure 4.6, possesses a

stronger singularity than in the previous L-shaped domain Poisson problem. The proposed ISBFM-

UR method and ISBFM-DR method with reduction only of the smooth part, are considered for the

MOR.

The differential equation and boundary conditions of cracked beam Poisson problem is given

below

∆u = 0 in Ω, (4.28a)

subjected to the boundary conditions,

u|y=0,−1/2≤x≤0 = 0, (4.28b)

∂u
∂y
|y=0,0≤x≤1/2 = 0, ∂u

∂x
|x=−1/2,0≤y≤1/2 = 0,

∂u
∂y
|y=1/2,−1/2≤x≤1/2 = 50, ∂u

∂x
|x=1/2,0≤y≤1/2 = 0

(4.28c)

where Ω = [−1/2, 1/2]× [0, 1/2]. The harmonic singular basis functions Fi used in this problem

are the same as in (3.19) of the cracked beam Poisson problem of Section 3.3. In this model
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problem, the fine scale solution is obtained from a uniform nodal distribution 48× 24 (N̄ = 1152)

with one enrichment function (N̂ = 1).

The solution approximation of the full model and its approximate derivatives are shown along

y = 0.001 near the singularity point in Figure 4.7. Figure 4.8 presents a comparison of the dis-

tribution of absolute errors of reduced solutions from ISBFM-UR and ISBFM-DR for different

percentage of reduction k/N = 5%, 10%, 20%, along y = 0.001. Compared to the ISBFM-UR ap-

proach, ISBFM-DR has a much smaller absolute error distribution for all reduced dimension k. For

low reduced dimension k/N = 5%, the reduced solution from ISBFM-UR poorly approximates

the fine scale solution but the error does decrease when k/N = 10%. Note that in the L-shaped

domain case, the error of the ISBFM-UR solution does not reduce until much higher k/N is used.

In this example, ISBFM-UR could be used for the reduction of the system, but the convergence

behavior of this method seems to be problem dependent, whereas the ISBFM-DR method provides

a fairly reliable reduced model for each examples.
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y = 0.001

48



lu
h
-u

d
r l

l∂
u
h
/∂
x
-∂
u
d
r /∂
x
l

l∂
u
h
/∂
y
-∂
u
d
r /∂
y
l

l∂
u
h
/∂
y
-∂
u
u
r /∂
y
l

l∂
u
h
/∂
x
-∂
u
u
r /∂
x
l

lu
h
-u

u
r l

Figure 4.8: Absolute error distribution of the reduced solutions for the cracked beam Poisson
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Chapter 5

Meshfree ISBFM Galerkin Formulation for

Linear Elastic Fracture Mechanics

5.1 Preliminaries

Meshfree solution to linear elastic fracture mechanics (LEFM) under the ISBFM Galerkin frame-

work is investigated in this chapter. We consider using the local asymptotic solution around the

crack tip based on Airy’s stress functions [Kanninen and Popelar, 1985] that satisfy the equilibrium

equation and the traction free boundary condition on the crack surfaces as the enrichments to the

RK approximation. This approximation is applied to the ISBFM Galerkin formulation to construct

the discrete system for LEFM.

5.1.1 Basic Equations in Linear Elastic Fracture Mechanics

Consider a 2D linear elastic fracture mechanics problem defined as

σij,j = 0 in Ω, (5.1a)
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subjected to the boundary conditions,

ui = gi on Γgi , (5.1b)

σijnj = hi on Γhi (5.1c)

where Ω is a cracked domain bounded by ∂Ω = Γ = Γg ∪Γh∪ΓC as described in Figure 5.1, with

ΓC = ΓC+ ∪ ΓC− , in which the crack faces ΓC+ and ΓC− are traction free.

The stress field σ = {σ11 σ22 σ12}T and the strain field ε = {ε11 ε22 2ε12}T = {u1,1u2,2 (u1,2 +

u2,1)}T satisfy the constitutive relation σ = Cε, where C is the elastic tensor defined as

C =



E
(1+ν)(1−2ν)


1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2

 for plane strain

E
(1−ν)2


1 ν 0

ν 1 0

0 0 1−ν
2

 for plane stress

(5.2)

where E is the Young modulus and ν is the Poisson’s ratio.

In LEFM, Griffith [Griffith, 1921] defined the strain energy release rate G as the amount of

energy released per unit of crack surface as the crack propagates as follows

G =
dW

dA
− dU

dA
(5.3)

where W is the external work done to the body, U is the internal strain energy and A is the crack

surface area. A crack will grow when the strain energy release rate G reaches the critical value of

the material’s resistance to crack initiation GC .

This energy balance approach was extended by Irwin’s work for the fracture of ductile materials
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Figure 5.1: Model of a cracked domain

[Irwin, 1957] which relates the strain energy release rate which is a global measure to the stress

intensity factor (SIF) K representing the local stress state near the crack tip [Irwin, 1958] by the

following relationship

G =
K2

E∗
(5.4)

where E∗ = E/(1 − ν2) for plane strain and E∗ = E for plane stress. The SIF K has also been

used to indicate crack growth when it reaches the fracture toughness KC of the material. The SIF

is determined by the characteristics of the problem, such as the crack location and size, the loading

and the domain geometry and can be evaluated using J-integrals [Rice, 1968]. The J-integral is a

path-independent contour integral around the crack. The strain energy release rateG can be related

to the J-integral as

J =

∫
Γ

(
Wn1 − σijni

∂uj
∂x1

)
dΓ = G (5.5)

where Γ can be any path connecting the two crack surfaces, as in Figure 5.2, W is the strain energy

density, ni is the outward normal to Γ, σij is the stress, uj the displacement and x1 is the direction

of the crack.

The J-integral from (5.5) can also be expressed in the domain integral form [Li et al., 1985]
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Figure 5.2: Arbitrary contour integral around the crack tip

[Shih et al., 1986] [Moran and Shih, 1987] as

J =

∫
ΩC

(
σij

∂uj
∂x1

−Wδ1j

)
∂q

∂xj
dΩ (5.6)

where ΩC is an enclosed domain surrounding the crack tip, q is a smooth weight function that is

zero outside of and ΩC is constant on an area containing the crack tip.

The crack propagation is defined as the addition of a new crack surface formation, for which

the crack propagation direction needs to be determined from different criteria. The strain energy

release rate failure criterion states that the crack propagates along the direction of maximum energy

release rate [Nuismer, 1975]. Other criteria include the direction normal to the one of maximum

hoop stress [Erdogan and Sih, 1963] or normal to the one of minimum strain energy density [Sih,

1974].

The difficulty in modeling cracks is to represent both the discontinuity in the displacement

field and the stress concentration at the crack tip. In the next section, enhancements of smooth

approximations for crack modeling are discussed.

53



 

  I J

Figure 5.3: Truncation of the support of nodes I and J near the crack surface

5.1.2 Numerical Treatments of Cracks

The discontinuities across the crack surface have been modeled by modifying the kernel of the

shape functions using the visibility criterion or Heaviside enrichment function. Both methods

modify the domain of influence of nodes near the crack to introduce discontinuities across the crack

surface into the approximation. In the visibility criterion technique [Belytschko et al., 1996b], the

domain of influence for nodes near the crack is truncated whenever it intersects the crack surface

as shown in Figure 5.3. In this manner, the approximation function associated with a node on one

side of the crack does not influence the nodes on the opposite side of the crack.

As shown in 5.3, the visibility criterion leads to a spurious discontinuity in the kernel function

as well as in the approximation function which can be relieved by the diffraction method [Organ

et al., 1996] that wraps the support around the crack tip. In this study, enrichment techniques are

proposed to represent both crack surface and stress singularity at the crack tip.

Enrichment functions based on the asymptotic displacement field near crack tip introduce a

discontinuity across the crack facein the displacement field and a singularity in the strain and the

stress fields at the crack tip. The local asymptotic solution for LEFM problems will be given in

Section 5.2.2.
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5.2 Extension of ISBFM to LEFM Problems

5.2.1 ISBFM Galerkin Formulation

ISBFM Galerkin formulation is derived in this section for the case of linear elastic fracture me-

chanics problem. Consider the following functional associated with the strong formulation given

in (5.1):

I =
1

2

∫
Ω

(
ūh(i,j) + ûh(i,j)

)
Cijkl

(
ūh(k,l) + ûh(k,l)

)
dΩ−

∫
Γhi

(
ūhi + ûhi

)
hi dΓ

−
∫

Γgi

(
σ̄hij + σ̂hij

)
nj
(
ūhi + ûhi − gi

)
dΓ +

β

2

∫
Γgi

(
ūhi + ûhi − gi

) (
ūhi + ûhi − gi

)
dΓ

(5.7)

By minimizing of the functional (5.7), the standard Galerkin formulation is obtained as follows

∫
Ω

δūh(i,j)Cijkl
(
ūh(k,l) + ûh(k,l)

)
dΩ

−
∫

Γgi

(
δūhi

(
Cijkl

(
ūh(k,l) + ûh(k,l)

)
nj − β

(
ūhi + ûhi

))
+ δσ̄hijnj

(
ūhi + ûhi

))
dΓ

=

∫
Γhi

δūhi hi dΓ−
∫

Γgi

(
−δūhi βgi + δσ̄hijnjgi

)
dΓ

(5.8a)

∫
Ω

δûh(i,j)Cijkl
(
ūh(k,l) + ûh(k,l)

)
dΩ

−
∫

Γgi

(
δûhi

(
Cijkl

(
ūh(k,l) + ûh(k,l)

)
nj − β

(
ūhi + ûhi

))
+ δσ̂hijnj

(
ūhi + ûhi

))
dΓ

=

∫
Γhi

δûhi hi dΓ−
∫

Γgi

(
−δûhi βgi + δσ̂hijnjgi

)
dΓ

(5.8b)

where σ̄hij = Cijklε̄
h
kl = Cijklū

h
(k,l) and σ̂hij = Cijklε̂

h
kl = Cijklû

h
(k,l).

Under the ISBFM framework, the enrichment functions for the non-smooth solution ûh are

selected to satisfy the equilibrium equation, i.e. σ̂hij,j = Cijklε̂
h
kl,j = Cijklû

h
(k,l),j = 0 on Ω. In

this manner, the domain integral involving singular basis functions can be expressed as a boundary
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integral using the integration by parts theorem below

∫
Ω

v(i,j)Cijklû
h
(k,l) dΩ =

∫
Γ

viCijklû
h
(k,l)nj dΓ−

∫
Ω

viCijklû
h
(k,l),j dΩ, ∀v ∈ V (5.9)

With the non-smooth approximation satisfying the equilibrium equation, we have

∫
Ω

v(i,j)Cijklû
h
(k,l) dΩ =

∫
Γ

viCijklû
h
(k,l)nj dΓ, ∀v ∈ V (5.10)

Consequently, equation (5.8) becomes as

∫
Ω

δūh(i,j)Cijklū
h
(k,l) dΩ−

∫
Γgi

(
δūhi

(
Cijklū

h
(k,l)nj − βūhi

)
+ δσ̄hijnjū

h
i

)
dΓ

+

∫
Γ

δūhiCijklû
h
(k,l)nj dΓ−

∫
Γgi

(
δūhi

(
Cijklû

h
(k,l)nj − βûhi

)
+ δσ̄hijnjû

h
i

)
dΓ

=

∫
Γhi

δūhi hi dΓ−
∫

Γgi

(
−δūhi βgi + δσ̄hijnjgi

)
dΓ

(5.11a)

∫
Γ

δûh(i,j)Cijklū
h
knl dΓ−

∫
Γgi

(
δûhi

(
Cijklū

h
(k,l)nj − βūhi

)
+ δσ̂hijnjū

h
i

)
dΓ

+

∫
Γ

δûhiCijklû
h
(k,l)nj dΓ−

∫
Γgi

(
δûhi

(
Cijklû

h
(k,l)nj − βûhi

)
+ δσ̂hijnjû

h
i

)
dΓ

=

∫
Γhi

δûhi hi dΓ−
∫

Γgi

(
−δûhi βgi + δσ̂hijnjgi

)
dΓ

(5.11b)

If the enrichment basis functions are required to satisfy the homogeneous boundary conditions

on ΓC , i.e. Cijklû
h
(k,l)nj = 0 on Γhi ∪ ΓC+ and Γhi ∪ ΓC− . By defining Γ̄hi = Γhi \ ΓC and

Γ̄gi = Γgi \ ΓC , the ISBFM Galerkin formulation for LEFM becomes

∫
Ω

δūh(i,j)Cijklū
h
(k,l) dΩ−

∫
Γgi

(
δūhi

(
Cijklū

h
(k,l)nj − βūhi

)
+ δσ̄hijnjū

h
i

)
dΓ

+

∫
Γ̄hi

δūhiCijklû
h
(k,l)nj dΓ−

∫
Γ̄gi

(
−δūhi βûhi + δσ̄hijnjû

h
i

)
dΓ

=

∫
Γhi

δūhi hi dΓ−
∫

Γgi

(
−δūhi βgi + δσ̄hijnjgi

)
dΓ

(5.12a)
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∫
Γ̄hi

δûh(i,j)Cijklū
h
knl dΓ−

∫
Γ̄gi

(
−δûhi βūhi + δσ̂hijnjū

h
i

)
dΓ

+

∫
Γ̄hi

δûhiCijklû
h
(k,l)nj dΓ−

∫
Γ̄gi

(
−δûhi βûhi + δσ̂hijnjû

h
i

)
dΓ

=

∫
Γhi

δûhi hi dΓ−
∫

Γgi

(
−δûhi βgi + δσ̂hijnjgi

)
dΓ

(5.12b)

In the next section, the enrichment functions which satisfy both the equilibrium equation and

the traction free crack surface condition will be derived.

5.2.2 Discretization of ISBFM Galerkin Formulation

The RK approximation is introduced for the smooth approximation ūh and the non-smooth ap-

proximation ûh is obtained from a linear combination of enrichment functions F which satisfy

equilibrium and the traction free boundary condition on the crack surface, i.e. CijklFM(k,l),j = 0

on Ω, CijklFM(k,l)nj = 0 on Γhi ∪ ΓC+ and Γhi ∪ ΓC− .

The enrichment functions commonly used in fracture mechanic problems are four branch func-

tions, defined as

F =

{
r1/2 sin(θ/2), r1/2 cos(θ/2), r1/2 sin(θ/2) sin(θ), r1/2 cos(θ/2) sin(θ)

}
(5.13)

Using those enrichment functions, the non-smooth approximation is ûh =
∑4

M=1 FM d̂M , i.e.

ûhi =
∑4

M=1 FM d̂Mi, where d̂M ∈ R2×1. Although these enrichment functions compose the first

symmetric and anti-symmetric part of the near crack tip asymptotic solution when used separately

in both directions, each individual basis function does not satisfy the PDE on Ω by itself. Thus

they are not adequate for the ISBFM Galerkin formulation in (5.12).

Instead, we introduce the local asymptotic solution derived from Williams’ solution [Williams,

1952] [Williams, 1957]:

ûhi =
N̂∑

M=1

F sym
Mi d̂

sym
M +

N̂∑
M=1

F antisym
Mi d̂antisym

M or ûh =
N̂∑

M=1

FM d̂M (5.14)
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where d̂M = [d̂sym
M d̂antisym

M ]T and FM = [F sym
Mi F

antisym
Mi ] where


F sym
M1 (r, θ) = rM/2

[(
κ+ M

2
+ (−1)m

)
cos
(
Mθ
2

)
− M

2
cos
((

M
2
− 2
)
θ
)]

F sym
M2 (r, θ) = rM/2

[(
κ− M

2
− (−1)m

)
sin
(
Mθ
2

)
+ M

2
sin
((

M
2
− 2
)
θ
)] (5.15a)


F antisym
M1 (r, θ) = −rM/2

[(
κ+ M

2
− (−1)M

)
sin
(
Mθ
2

)
− M

2
sin
((

M
2
− 2
)
θ
)]

F antisym
M2 (r, θ) = rM/2

[(
κ− M

2
+ (−1)M

)
cos
(
Mθ
2

)
+ M

2
cos
((

M
2
− 2
)
θ
)] (5.15b)

Here θ ∈ [−π, π] and κ is the Kolosov constant defined as κ = 3 − 4ν for plane strain and

κ = (3−ν)/(1+ν) for plane stress. These basis functions satisfy the equilibrium equation and the

homogeneous boundary condition near the singularity points. Enrichment functions corresponding

to even M can be recovered by polynomial basis and are not considered in the approximation if

they are linearly dependent with the RK shape functions. Therefore, the selection of the enrich-

ment basis function depends on the desired order of completeness of the RK shape functions. The

first enrichment shape functions corresponding to odd values of M are shown in Figure 5.4 for

the symmetric bases F sym
M and in Figure 5.5 for the anti-symmetric bases F antisym

M . We can rec-

ognize that the first symmetric and anti-symmetric enrichment functions, for M = 1, correspond

respectively to the basis of the analytical solution of the crack opening Mode I and sliding Mode

II, illustrated in Figure 5.6.

The set of enrichment basis functions FM defined in (5.14) is composed of both symmetric

and anti-symmetric functions. If the symmetric or anti-symmetric behavior of the exact solution is

known from the loading or the domain geometry, we may only select symmetric or anti-symmetric

basis for the enriched part of the solution.

5.2.3 Discrete System

The discretization of ISBFM Galerkin formulation serves as a full scale model for the MOR ap-

proach, as will be described in the next chapter. The corresponding discrete system is detailed in
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Figure 5.4: Symmetric enrichment functions F sym
M for M = 1, 3, 5
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Figure 5.5: Anti-symmetric enrichment functions F antisym
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Mode I: Opening Mode II: Sliding

Figure 5.6: Crack opening Mode I and crack sliding Mode II

the following.

The smooth part of the solution is expressed as

ūh(x) =

ΨT(x) 0

0 ΨT(x)

 d̄ (5.16)

i.e. ūhi (x) = ΨT(x)d̄i =
∑N̄

J=1 ΨJ(x)d̄iJ where ΨJ are RK shape functions, d̄ ∈ R2N̄×1, and N̄

is the number of RK nodes. The smooth stress field is defined as σ̄ = {σ̄h11 σ̄
h
22 σ̄

h
12}T = Cε̄h,

and the smooth strain field as ε̄h = {ε̄h11 ε̄
h
22 2ε̄h12}T = {ūh1,1 ūh2,2 (ūh1,2 + ūh2,1)}T = B̄d̄, where

B̄ = {B̄1 . . . B̄J . . . B̄N̄} is defined with

B̄J =


ΨJ,1 0

0 ΨJ,2

ΨJ,2 ΨJ,1

 (5.17)

The non-smooth part of solution is approximated using the enrichment basis functions defined
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in (5.15) consisting a symmetric and an anti-symmetric pair by

ûh =
N̂∑

M=1

FM d̂M =
N̂∑

M=1

F sym
M d̂sym

M +
N̂∑

M=1

F antisym
M d̂antisym

M (5.18)

where FM = [F sym
M F antisym

M ] ∈ R2×2 are the enrichment functions defined in (5.15), the non

smooth coefficients are d̂ = [d̂1 . . . d̂M . . . d̂N̂ ] ∈ R2N̂×1 with d̂M = [d̂sym
M d̂antisym

M ], and N̂ is the

number of enrichment basis functions used. The numerical non-smooth stress field is discretized as

σ̂ = {σ̂h11 σ̂
h
22 σ̂

h
12}T = Cε̂h, and the numerical non-smooth strain field as ε̂h = {ε̂h11 ε̂

h
22 2ε̂h12}T =

{ûh1,1 ûh2,2 (ûh1,2 + ûh2,1)}T = B̂d̂, where B̂ = [B̂1 . . . B̂M . . . B̂N̂ ] is defined with

B̂M =


F sym
M1,1 F antisym

M1,1

F sym
M2,2 F antisym

M2,2

F sym
M1,2 + F sym

M2,1 F antisym
M1,2 + F antisym

M2,1

 (5.19)

The choice of symmetric and/or anti-symmetric bases for the enrichments depends on the geometry

and the loading of each specific problem.

The discretization of ISBFM Galerkin formulation defined in 5.12 can be written in a matrix

form as follows

Kd =

 K̄ “K

“KT K̂


d̄
d̂

 =

f̄
f̂

 = f (5.20)

where d̄ ∈ R2N̄×1 and d̂ ∈ R2N̂×1 are coefficient vectors to be determined. The stiffness matrix

K ∈ RN×N is a positive definite matrix, where N = 2(N̄ + N̂). The sub-matrix K̄ ∈ R2N̄×2N̄

is a sparse matrix, “K ∈ R2N̄×2N̂ and K̂ ∈ R2N̂×2N̂ are the other sub-matrices obtained by the
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following,

K̄(2I−1)(2J−1) K̄(2I−1)(2J)

K̄(2I)(2J−1) K̄(2I)(2J)

 =

∫
Ω

B̄T
ICB̄J dΩ

−
∫

Γgk

(
ΨIeke

T
kNCB̄J + B̄T

IC
TNTeke

T
kΨJ

)
dΓ

+ β

∫
Γgk

ΨIΨJeke
T
k dΓ

(5.21)

K̂(2I−1)(2J−1) K̂(2I−1)(2J)

K̂(2I)(2J−1) K̂(2I)(2J)

 =

∫
Γ̄hk

FIeke
T
kNCB̂J dΓ−

∫
Γ̄gk

B̂T
IC

TNTeke
T
kFJ dΓ

+ β

∫
Γ̄gk

FIeke
T
kFJ dΓ

(5.22)

and “K(2I−1)(2J−1)
“K(2I−1)(2J)

“K(2I)(2J−1)
“K(2I)(2J)

 =

∫
Γ̄hk

ΨIeke
T
kNCB̂J dΓ−

∫
Γ̄gk

B̄T
IC

TNTeke
T
kFJ dΓ

+ β

∫
Γ̄gk

ΨIeke
T
kFJ dΓ

(5.23)

where

N =

n1 0 n2

0 n2 n1

 (5.24)

Here, N is a matrix containing the components of the vector n normal to the boundary where the

integral is evaluated and ek is the unit vector in the direction of the imposition of the boundary

condition, where k corresponds to the direction of the prescribed displacement at the essential

boundary, k = 1 corresponds to the normal component and k = 2 corresponds to the tangential

component. The sub-vectors in f ∈ RN×1 in (25) are

{
f̄

}
I

=

∫
Γ̄hk

ΨIekhk dΓ−
∫

Γ̄gk

(
−βΨIekgk + B̄T

IC
TNTekgk

)
dΓ (5.25)
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Figure 5.7: Loaded line crack model

and {
f̂

}
I

=

∫
Γ̄hk

F T
I ekhk dΓ−

∫
Γ̄gk

(
−βF T

I ekgk + B̂T
IC

TNTekgk

)
dΓ (5.26)

5.2.4 Numerical Example

The following example is a line crack in an infinite medium subjected to hydrostatic tension at

infinity, shown in Figure 5.7.

The exact solution of this problem is derived from the complex variable approach [England,
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2003] with the use of Westergaard’s stress function [Westergaard, 1997] given by

u =


u1 = κ−1

4µ
σ∞ (r1r2)1/2 cos

(
θ1+θ2

2

)
− σ∞r2

(r1r2)1/2
sin θ sin

(
θ − θ1+θ2

2

)
u2 = κ+1

4µ
σ∞ (r1r2)1/2 sin

(
θ1+θ2

2

)
− σ∞r2

(r1r2)1/2
sin θ cos

(
θ − θ1+θ2

2

) (5.27)

where κ is the Kolosov constant defined previously and µ = E/(2(1 + ν)) is the shear modulus.

The analytical stresses σ =

{
σ11 σ22 σ12

}T

can also be derived and are given as follows

σ =


σ11 = σ∞

{
r

(r1r2)1/2
cos
(
θ − θ1+θ2

2

)
− a2r

(r1r2)3/2
sin θ sin

(
3(θ1+θ2)

2

)}
σ22 = σ∞

{
r

(r1r2)1/2
cos
(
θ − θ1+θ2

2

)
+ a2r

(r1r2)3/2
sin θ sin

(
3(θ1+θ2)

2

)}
σ12 = σ∞

a2r

(r1r2)3/2
sin θ cos

(
3(θ1+θ2)

2

) (5.28)

The analytical value of the stress intensity factor KI is given as

KI = σ0

√
πa (5.29)

The geometry and boundary condition of this problem are symmetrical about the crack surface.

Therefore, only the symmetric enrichment basis functions F sym
m in (5.15a) from the local asymp-

totic solution is considered to avoid polluting the solution with the anti-symmetric basis functions.

Considering the symmetry of this problem, a half model of this problem is modeled as shown in

Figure 5.8. The penalty parameter in the Nitsche’s method for imposition of essential boundary

condition can influence the opening of the crack when displacement are prescribed near the crack

surfaces. To limit the influence of the penalty parameter on the crack opening, traction is prescribed

on Γ1 ∪ Γ3 ∪ Γ4 and the displacement is imposed in both x1 and x2 directions on the boundary Γ2

on the right. The value of these boundary conditions is obtained from the analytical solution from

(5.27) and (5.28).

Consider the specimen with dimension 100 mm × 100 mm with a middle crack of length
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Figure 5.8: Half model for the study of the loaded line crack

a = 50 mm. The specimen is made of borosilicate glass, with properties E = 64, 000 N/mm2

and ν = 0.2. The fracture toughness of the material considered in this example is obtained from

experimental study [Wiederhorn, 1969] and is given as KC = 0.77 N/m3/2. The magnified de-

formed shape of the sample obtained from the exact solution in (5.27) is shown in Figure 5.9.

The relative errors in H1 seminorm of u and the relative absolute error in SIF are respectively

denoted as follows

es1 =
|u− uh|H1

|u|H1

, eKI =
|KI −Kh

I |
|KI |

(5.30)

Figures 5.10 and 5.11 present the errors in both L2 norm and H1 seminorm of the solutions from

standard Galerkin and ISBFM Galerkin formulations. Those solutions are obtained using a 48×48

uniform discretization (N̄ = 4608) with one, two and three enrichment functions (N̂ = 1, 2, 3) and

RK approximation with linear order basis and cubic-B spline kernel function. Different orders of

Gaussian quadrature for the domain and boundary integrals are investigated. The ISBFM Galerkin

formulation can achieve good accuracy by using lower order of Gaussian quadrature, such as 2×2
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Figure 5.9: Magnified deformation obtained from the exact solution of the loaded line

or 4 × 4, while 12 × 12 Gaussian quadrature rule is needes in the standard Galerkin method for a

similar accuracy.

The distributions of the absolute errors of solutions over the domain are compared in Figure

5.12 where 8th order of Gaussian quadrature has been used in the Galerkin formulations. The

results show that the numerical solution is improved by the ISBFM Galerkin formulation in the

entire domain compared to the standard Galerkin method. The error in the ISBFM Galerkin method

is localized around the crack tip which can be further enhanced using more enrichment functions

in the approximation.

The relative absolute errors in SIF from the standard and ISBFM Galerkin approximations are

shown in Figure 5.13. The SIFs are calculated according to (5.4) where the strain energy release

rate G is obtained from the evaluation of the numerical J-integral from (5.6). The exact SIF for

this example given by (5.29) is K = 12.53 N/mm3/2.

For different numbers of Gauss points (GP) for the numerical integrations, the convergence
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Figure 5.11: Relative error in H1 seminorm of approximations of loaded line crack solution under
different Galerkin formulations and different orders of Gaussian quadrature
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lations with different orders of Gaussian quadrature

69



Table 5.1: Rate of Convergence in L2 norm of standard and ISBFM Galerkin formulations with
different orders of Gaussian quadrature

Standard Galerkin ISBFM Galerkin
Orders of Gaussian Quadrature 2 4 8 12 2 4 8 12

Rate of Convergence 1.04 1.14 1.50 1.89 1.55 2.69 2.77 2.77

plots of standard and ISBFM Galerkin formulations in relative L2 error norm are shown in Figure

5.14 and Table 5.1 shows the corresponding asymptotic rates of convergence. The ISBFM Galerkin

formulation improve the accuracy of the approximation but also the rate of convergence.

This example demonstrates that the selection of proper enrichment basis and ISBFM Galerkin

formulation are critical to the effectiveness of the numerical solution. The ISBFM Galerkin for-

mulation will be considered to construct the full scale model for the proposed MOR methods for

LEFM problems presented in the next chapter.
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Chapter 6

ISBFM Galerkin based MOR Methods for

Linear Elastic Fracture Mechanics

6.1 Preliminaries

The two MOR methods for problems with discontinuities introduced in Chapter 4 are extended to

LEFM. The following section first extends the formulation of ISBFM-UR and ISBFM-DR methods

to two-dimensional fracture problems. The performance of the reduced models is then investigated

for a loaded line crack example at the end of this chapter. A detail analysis of the accuracy, stability

and efficiency of the MOR approaches is presented in Chapter 7.

6.2 Reduced Models for LEFM

Consider a discrete system Kd = f defined in (5.20) in Chapter 5, and recall the expression of a

reduced order model of dimension k ≤ N = 2(N̄ + N̂), we have

Krdr = f r (6.1)
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where k is the order of reduction, Kr ∈ Rk×k is the reduced stiffness matrix, f r ∈ Rk×1 is the

reduced force vector and dr ∈ Rk×1 is the reduced coefficient vector. ISBFM-UR and ISBFM-

DR presented in 4 are extended for reduced order modeling of a 2D enriched solution for fracture

problems in the followings.

Recall ISBFM-UR, where a single projection P ∈ RN×k is applied to all DOF and the reduced

system is defined as

Kurdur = fur, Kur = P TKP , fur = P Tf (6.2)

where dur is the reduced coefficient vector, Kur is the reduced stiffness matrix and fur is the

reduced force vector.

In ISBFM-DR, the reduced coefficient vector ddr ∈ Rk×1 constitutes of d̄dr ∈ Rk̄×1 and

d̂dr ∈ Rk̂×1. Similar to that of the Laplace problem, the decomposed projection matrix is defined

as follows P̄ 0

0 P̂

 ∈ R(2N̄+2N̂)×(k̄+k̂) (6.3)

where P̄ ∈ R2N̄×k̄ is the projection of all smooth DOF and P̂ ∈ R2N̂×k̂ is the projection of all non-

smooth DOF by considering the separate enrichment functions in different directions for LEFM as

discussed in Chapter 5. The reduced dimension is k = k̄ + k̂, with k̄ ≤ 2N̄ and k̂ ≤ 2N̂ . The

reduced system is given as

Kdrddr = f dr (6.4)

with

Kdr =

 K̄dr “Kdr

“KdrT K̂dr

 , ddr =

d̄dr
d̂dr

 , f dr =

f̄ dr
f̂ dr

 (6.5)

where the sub-matrices are defined as K̄dr = P̄ TK̄P̄ ∈ Rk̄×k̄, “Kdr = P̄ T “KP̂ ∈ Rk̄×k̂ and

K̂dr = P̂ TK̂P̂ ∈ Rk̂×k̂ and the sub-vectors are f̄ dr = P̄ T f̄ ∈ Rk̄×1 and f̂ dr = P̂ T f̂ ∈ Rk̂×1.
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The construction of the projection matrices P , P̄ and P̂ involves modal analysis of the fine

scale system and a statically reduced system. It has been described in detail in Chapter 4 and will

not be repeated in this section. We note that the parameter for Nitsche’s method for imposing

essential boundary conditions has noticable influence on the eigen-spectrum of the fine system and

thus affects the characteristics of the projected reduced order system as will be observed in the

study of numerical examples.

6.3 Numerical Example and Discussions

In this section, the proposed MOR methods, ISBFM-UR and ISBFM-DR, are applied to the model

order reduction of a medium with a line crack subjected to hydrostatic tension at infinity as pre-

sented in Section 5.2.4. This is the same problem as shown in Figure 5.8 in the previous chapter

and symmetry is considered. A finite dimension of 100 mm × 100 mm of a brittle material with

E = 64, 000 N/mm2, ν = 0.2 and middle crack of length a = 50 mm is modeled using the pro-

posed MOR methods. The boundary conditions on the boundaries of the finite domain are also

identical to those defined in Section 5.2.4.

The fine scale solution is obtained from ISBFM Galerkin formulation using a 48× 48 uniform

discretization with one symmetric enrichment function F sym
1 from (5.15a) (N̂ = 1), composed of

different basis for each displacement component, and the numerical integrals are evaluated using

8th order Gaussian quadrature. The numerical results of the fine scale solution were presented in

Section 5.2.4. In this study, the reduced solutions from ISBFM-DR are obtained with k̂ = N̂ ,

where the projection is only applied to the smooth part of the approximation.

Figure 6.1 presents the distribution of the error in Euclidian norm between the fine scale so-

lution and the approximated reduced solutions obtained from ISBFM-UR and ISBFM-DR, with

different percentage of reduction k/N = 1%, 4%, 9%. First, it is shown that the error of the reduced

solutions from ISBFM-DR is smaller than the one from ISBFM-UR. It is observed that the error

is concentrated near the boundary on the right, especially for the reduced solution of ISBFM-UR.
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Table 6.1: Relative error in SIF of the reduced solutions for k/N = 1%, 4%, 9%, 20%, 40%

Relative error in SIF

k/N 1% 4% 9% 20% 40%

ISBFM-UR 1.16 10−1 2.16 10−2 2.80 10−2 3.29 10−2 4.81 10−2

ISBFM-DR 2.77 10−2 1.93 10−2 1.41 10−2 1.27 10−2 1.18 10−2

This boundary corresponds to the boundary where non-homogeneous displacement is prescribed

and it causes an issue for the reduced solution from ISBFM-UR. Indeed, the eigenmodes used

for this projection correspond to the lowest eigenvalues of the fine scale system and are homoge-

neous on the essential boundary. The eigenmodes that are non-zero on this boundary correspond

to higher eigenvalues. Therefore, the reduced solution from ISBFM-UR is obtained from only the

lowest eigenmodes incapable of representing the non-homogeneous prescribed displacement. On

the contrary, the reduced solution from ISBFM-DR is obtained from a decomposed projection.

The combination of both reduced smooth solution and enriched solution are forced to meet the

essential boundary condition. Under this ISBFM-DR MOR, the eigenmodes used to project the

smooth part of solution are non-zero on the essential boundary, which allows the reduced solution

to properly represent the prescribed non-homogeneous displacements. The deformation from the

reduced solutions of both proposed MOR methods for a percentage of reduction k/N = 9% are

compared to the deformation of the fine scale solution as shown in Figure 6.2. As expected from

the error distribution plots in Figure 6.1, the reduced solution from ISBFM-UR does not perform

as well as the one from ISBFM-DR, especially near the essential boundary on the right.

A comparison of SIF of both ISBFM-UR and ISBFM-DR methods with the analytical SIF

K = 12.53 N/mm3/2 from (5.29) is given in Table 6.1. This table presents the relative error in SIF

of the reduced solutions from ISBFM-UR and ISBFM-DR with different percentage of reduction

k/N = 1%, 4%, 9%, 20%, 40% and shows as the size of the reduced model is increased, the SIF

from ISBFM-DR converges to the full SIF whereas the one from ISBFM-UR does not converge.
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Chapter 7

Accuracy, Stability and Complexity

Analysis of the Proposed ISBFM based

MOR Methods

7.1 Preliminaries

The proposed ISBMF-UR and ISBGM-DR MOR methods presented in Chapters 4 and 6 are fur-

ther investigated in this chapter A detailed error analysis of these MOR approaches is first provided,

followed by the stability analysis of the reduced models. The operational counts of the two pro-

posed MOR methods are also presented, and the efficiency comparison of the MOR methods is

reported.

7.2 Error Bound Estimation of the Reduced Solutions

For ISBFM-UR, let ΦT = {ΨT,F T} be the collection of RK shape functions Ψ and enrichment

functions F , and let ΦurT be the projected basis functions from fine scale basis functions ΦT i.e.,

ΦurT = ΦTP . It follows that the reduced solution is uur = ΦurTdur. The solution error in vector
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sup-norm between the full model and the reduced model is given by

∥∥uh − uur∥∥∞ =
∥∥ΦTd−ΦurTdur

∥∥
∞

≤ ‖Φ‖∞ ‖d− Pd
ur‖∞

≤ ‖Φ‖∞max
i∈G

∣∣∣∣φT
i f

λi

∣∣∣∣
(7.1)

where G = {k + 1, . . . , N} is a set of indices of the eigenpairs in {φi, λi}Ni=1 satisfying the

eigensystem Kφi = λiφi that have been truncated in the projection to the reduced system, and

‖ · ‖∞ is defined for a matrixX = (Xij)1<i<M,1<j<N as

‖X‖∞ = max
1≤i≤M

N∑
j=1

|Xij| (7.2)

By using the Schwarz inequality and the pairwise orthonormal eigenvectors, we have

max
i∈G

∣∣∣∣φT
i f

λi

∣∣∣∣ ≤ max
i∈G

‖φT
i ‖2 ‖f‖2

|λi|

≤
√
N
‖f‖∞
λk+1

(7.3)

where λk+1 is the smallest eigenvalue beyond the selected eigenpairs {φi, λi}ki=1 that form the

projection matrix. The error bound for the ISBFM-UR is expressed as

∥∥uh − uur∥∥∞ ≤ √Nλ−1
k+1 ‖Φ‖∞ ‖f‖∞ (7.4)

It can be observed that the solution error is related to the smallest remaining eigenvalues not con-

sidered in the construction of the projection P . Note that the error bound in (7.4) would vary when

different numerical techniques for the imposition of boundary conditions are used.

Next, we present the error estimation for ISBFM-DR. Recall that the fine scale systemKd = f
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is decoupled as

K̄cd̄ = f̄ c, K̄c = K̄ − “KK̂−1 “KT, f̄ c = f̄ − “KK̂−1f̂ (7.5a)

K̂d̂ = f̂ c, f̂ c = f̂ − “KTd̄ (7.5b)

We have the relation between the smooth and non-smooth coefficient vectors:

d̂ = K̂−1f̂ c = K̂−1(f̂ − “KTd̄) (7.6)

The reduced system (4.23) from ISBFM-DR can be decoupled similarly to that in (4.25). After

solving the coefficient vector of the smooth part d̄dr, the coefficient vector of non-smooth part d̂dr

can be obtained as well, i.e.,

d̂dr = (K̂dr)−1(f̂ dr − “KdrTd̄dr)

= P̂+K̂−1(P̂ T)+(P̂ Tf̂ − P̂ T “KTP̄ d̄dr)

= P̂+K̂−1 (P̂ T)+P̂ T︸ ︷︷ ︸
1

(f̂ − “KTP̄ d̄dr)

= P̂+K̂−1(f̂ − “KTP̄ d̄dr)

(7.7)

where P̂+ is the pseudo-inverse of non-square matrix P̂ . Subtracting P̂ times (7.7) from (7.6), it

follows that
d̂− P̂ d̂dr = K̂−1(f̂ − “KTd̄)− P̂ P̂+K̂−1(f̂ − “KTP̄ d̄dr)

= K̂−1 “KT(P̄ d̄dr − d̄)

(7.8)

In a similar way, we have the error estimation for ISBFM-DR as follows

∥∥uh − udr∥∥∞ =
∥∥∥ΨTd̄+ F Td̂− (ΨTP̄ d̄dr + F TP̂ d̂dr)

∥∥∥
∞

≤ ‖Ψ‖∞
∥∥d̄− P̄ d̄dr∥∥∞ + ‖F ‖∞

∥∥∥d̂− P̂ d̂dr∥∥∥
∞

≤
{
‖Ψ‖∞ + ‖F ‖∞

∥∥∥K̂−1 “KT
∥∥∥
∞

}∥∥d̄− P̄ d̄dr∥∥∞
(7.9)
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We can estimate the order of ‖K̂−1 “KT‖∞ from the definition of entries of sub-matrices given in

Chapter 3 for Laplace problems with singularities and from the properties of RK shape functions,

‖Ψi‖∞ ≤ C and ‖∇Ψi‖∞ ≤ Ca−1, where a is the support size of the kernel function. We also

consider the regularity of enrichment functions to yield

[
K̂−1 “KT

]
ij
≈ O

(
r−αi

)
(7.10)

where i = 1, . . . , N̂ and

αi =


2i/3 for Θ = 3π/2

i− 1/2 for Θ = 2π

(7.11)

Consequently, we have a bound as follows

∥∥∥K̂−1 “KT
∥∥∥
∞
≤ Ĉ (7.12)

where Ĉ is a bounded constant independent to eigenvalues and discretization length scale. Equa-

tion (7.9) is further manipulated to yield

∥∥uh − udr∥∥∞ ≤ (‖Ψ‖∞ + Ĉ ‖F ‖∞)
∥∥d̄− P̄ d̄dr∥∥∞

≤ (‖Ψ‖∞ + Ĉ ‖F ‖∞) max
j∈Ḡ

∣∣∣∣∣ϕT
j f̄

c

µj

∣∣∣∣∣
≤
√
N̄µ−1

k̄+1
(C + Ĉ ‖F ‖∞)

∥∥f̄ c∥∥∞
(7.13)

where Ḡ = {k̄ + 1, . . . , N̄} is the set of indices of the eigenpairs in {ϕj, µj}N̄j=1 associated with

the eigensystem K̄cϕj = µjϕj that are truncated in the construction of the projection matrix P̄ .

By inclusion principle and interlacing properties [Golub and van Van Loan, 1996], we have the

relationship between two sets of eigenvalues λi and µj forK and K̄c, respectively, as follows

µi ≤ λi+k̂, ∀i ∈ {1, 2, . . . , N̄} (7.14)
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We have the property that µk̄+1 ≤ λk+1 and that the values λk+1 and µk̄+1 are very close when the

number of enrichment function N̂ is small. The magnitude of ‖Φ‖∞ and Ĉ‖F ‖∞ are dependent

on the number of enrichment basis used and are usually bounded. In summary, we have error

bounds for ISBFM-UR and ISBFM-DR as follows

∥∥uh − uur∥∥∞ ≤ C̄1

√
Nλ−1

k+1 ‖f‖∞ (7.15)

∥∥uh − udr∥∥∞ ≤ C̄2

√
N̄µ−1

k̄+1

∥∥f̄ c∥∥∞ (7.16)

where C̄1 = ‖Φ‖∞ and C̄2 = C + Ĉ‖F ‖∞. This estimate suggests that the errors of the proposed

reduced approximations are greatly influenced by the values of ‖f‖∞ and ‖f̄ c‖∞. The numerical

results compared with these error analysis are presented in Section 4.3.

7.3 Stability Analysis of the Reduced Systems

In this section, the stability of the discrete systems obtained from both ISBFM-UR and ISBFM-DR

approaches is studied. We first discuss the perturbation properties of the reduced system Krdr =

f r. If both matrix and right-hand side vector are perturbed, then the solution of reduced system

may be expressed as dr + δdr and satisfies the following equation

(Kr + δKr)(dr + δdr) = (f r + δf r) (7.17)

The following relative perturbation bound relates the perturbation of the solution to the pertur-

bation of the left-hand side matrix and the right-hand side vector as

‖δdr‖
‖dr‖

≤

(
1 + ‖δfr‖

‖fr‖

)
‖δKr‖
‖Kr‖ + cond(Kr)‖δf

r‖
‖fr‖

1−
(
‖δKr‖2

‖Kr‖2 + (1 + cond(Kr)) ‖δK
r‖

‖Kr‖

) (7.18)
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Herein the vector 2-norm is considered, i.e., ‖ · ‖ = ‖ · ‖2, and the condition number is defined as

cond(Kr) = ‖Kr‖
∥∥(Kr)−1

∥∥ =
λmax(Kr)

λmin(Kr)
(7.19)

We can observe from (7.18) that this condition number plays a key role in the sensitivity of the

solution subjected to small perturbations. If the left-hand side matrix is not perturbed i.e. δKr = 0,

then the bound in (7.18) becomes

‖δdr‖
‖dr‖

≤ cond(Kr)
‖δf r‖
‖f r‖

(7.20)

A sharper measure of condition numbers has been proposed by Chan and Foulser [Chan and

Foulser, 1988], called effective condition number, in which the right-hand side vector is taken into

account in defining the conditioning of a linear system, and is given as follows

condeff(K
r) = cond(Kr)

‖f r‖√
‖f r‖2 + (cond(Kr)2 − 1) β2

min

(7.21)

where βmin is an inner product of the eigenvector with respect to smallest eigenvalue λmin(Kr) and

the right-hand side vector f r. The corresponding perturbation property has the following bound

‖δdr‖
‖dr‖

≤ 1

1− ‖Kr‖−1 ‖δKr‖

{
cond(Kr)

‖δKr‖
‖Kr‖

+ condeff(K
r)
‖δf r‖
‖f r‖

}
(7.22)

Similarly, if δKr = 0, then we obtain

‖δdr‖
‖dr‖

≤ cond(Kr)
‖δf r‖
‖f r‖

(7.23)

The investigations of the stability of problems with singularities in terms of effective condition-

ing number [Huang and Li, 2006] [Hu et al., 2011] reveal that the traditional condition number

overestimates the ill-conditioning of the system.
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In the following, we investigate the relation between condition numbers of the full system

(4.17) and the reduced system (4.18). It can be easily derived that

cond(Kr) = cond(P TKP )

=
∥∥P TKP

∥∥∥∥(P TKP )−1
∥∥

≤
∥∥P T

∥∥ ‖K‖ ‖P ‖∥∥P+
∥∥∥∥K−1

∥∥∥∥(P+)−1
∥∥

≤ ‖K‖
∥∥K−1

∥∥ = cond(K)

(7.24)

In the above inequality, ‖P ‖ = ‖P T‖ = 1 has been considered, as the matrix P has orthonormal

columns. Similarly, the effective condition numbers of both full and reduced system have the

following relation

condeff(K
r) ≤ condeff(K) (7.25)

Next, we consider the reduced matrixKr in (4.18) obtained from the two MOR methods:

1. ISBFM-UR: Kr = Kur given in (4.20), where the projection P is obtained from K with

the eigenpairs {φi, λi}Ni=1.

2. ISBFM-DR:Kr = Kdr given in (4.24), where the sub-projections P̄ and P̂ are constructed

based on K̄c and K̂, with the eigenpairs {ϕj, µj}N̄j=1 and {ξl, ηl}N̂l=1, respectively for the

decomposed smooth and non-smooth discrete equations.

By means of the Rayleigh quotient [Golub and van Van Loan, 1996] of the reduced stiffness

matrix Kr, we can derive the bound of condition number for both ISBFM-UR and ISBFM-DR.

For ISBFM-UR, the condition number is given by

cond(Kur) =
λurk
λur1

=
λk
λ1

(7.26)

where {λuri }ki=1 are the eigenvalues of Kur. For ISBFM-DR, after some manipulations of the

Rayleigh quotient, a bound of the condition number is obtained using eigenvalues of sub-matrices
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ofK. It is expressed as

cond(Kdr) =
λdrk
λdr1

≤
µk̄ + ηk̂ + εN

λ1

(7.27)

where {λdri }ki=1 are the eigenvalues of Kdr, which are bounded by the minimum and maximum

eigenvalues of K, i.e. λ1 ≤ λdri ≤ λN , ∀i ∈ {1, 2, . . . , k}. We can deduce the property λ1 ≤ λdr1 .

Besides, εN is the maximal eigenvalue of matrixK ′ defined as follows

K ′ =

 “KK̂−1 “KT “K

“KT 0

 (7.28)

The values of εN and ηk̂ are dependent on the type and the number of enrichment bases that

have been used. From the interlacing property in (7.14), we obtain the relationship between the

condition numbers of the reduced systems from ISBFM-UR and ISBFM-DR as follows

cond(Kdr) ≤ µk̄
λ1

+
ηk̂ + εN
λ1

≤ λk
λ1

+
ηk̂ + εN
λ1

≤ cond(Kur) +B (7.29)

where the term B > 0 is affected by the value of ηN̂ due to the use of enrichment bases.

From the theoretical analysis of the stability for these two reduced systems, we can conclude

that the ISBFM-DR has a larger bound of condition number than that in ISBFM-UR. The detail of

the eigenspectrum of the different matrices will be presented for the numerical examples studied

at the end of this chapter.

7.4 Complexity Analysis of the MOR Procedures

The total operation counts in applying each of the two proposed MOR methods are presented in this

section and are compared to the operation count in solving the fine scale system. We assume that

the full solution is obtained when Cholesky decomposition is directly applied to the full system.

The operation counts for the two proposed MOR methods are obtained using additions/subtractions
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(A/S) and multiplications/divisions (M/D) comparisons [Hu et al., 2009] [Press et al., 1986]. It is

known that

1(op) = 1(A/S) + 1(M/D) (7.30)

For solving the full systemKd = f by Cholesky method, the cost will be

N3

6
+N2 =

(N̄ + N̂)3

6
+ (N̄ + N̂)2 op (7.31)

The operation count of model order reduction method from ISBFM-UR can be obtained. We

first need to find the eigenvectors of the k smallest eigenvalues of K, this is done by using im-

plicitly restarted Lanczos method (IRLM) [Calvetti et al., 1994] [Lehoucq and Sorensen, 1996].

This technique is very efficient when only a few eigenvalues need to be computed, which is the

case in model order reduction as reduced models of dimension as small as possible are desired

[Bergamaschi and Putti, 2002] [Bai, 2000].

The costs of the IRLM can be decomposed into different steps. The matrix vector products

cost γpN , where the parameter γ denotes twice the average number of non-zero entries per row of

matrixK in (4.17) and p is the number of additional steps in Lanczos method. The basic Lanczos

steps cost 9pN , the orthogonalization corrections cost 4(kp + p2)N and the application of the

implicit restart has a cost of 2N(kp+ p2) + (k + p)3. In summary, the overall cost of the IRLM is

(4p+ 6k+ 9 + γ)pN + 2k2N + (k+ p)3. In ISBFM-UR, finding the k coefficients duri = φT
i f/λi

costs (N + 1)k and computing Pdur costs kN . The total cost for ISBFM-UR is

(4p+ 6k + 9 + γ) + 2k2N + (k + p)3

+ (N + 1) k + kN
(7.32)

For the computational count of ISBFM-DR method, we first need to find the operation count

for the inverse of K̂, which is N̂3, for the construction of K̄c = K̄ − “KK̂−1 “KT, which is

N̄N̂2 + N̄2N̂ + N̄2 and for the construction of the vector f̄ c = f̄ − “KK̂−1f̂ is N̂2 + N̄N̂ + N̄ .
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Then the eigenvectors of the k̄ smallest eigenvalues of K̄c and the eigenvectors of the k̂ smallest

eigenvalues of K̂ are obtained, this is done by using by using IRLM, for which the cost has been

detailed in the previous paragraph for ISBFM-UR. In the case of ISBFM-DR, the cost is given by

(4p̄+6k+9+γ̄)p̄N̄+2k̄2N̄+(k̄+ p̄)3+(p̂+6k+9+γ̂)p̂N̂+2k̂2N̂+(k̂+ p̂)3, where γ̄ is twice the

average number of non-zero entries per row of K̄c, and γ̂ is twice the average number of non-zero

entries per row of K̂ and p̄ and p̂ are the numbers of additional steps in Lanczos methods. Finding

the k̄ coefficients d̄drj = ϕT
j f̄

c/µj costs (N̄ + 1)k̄ and the computation of P̄ d̄dr costs k̄N̄ . The

construction of the vector f̂ cdr = f̂ − “KTP̄ d̄dr needs to be considered and its cost is N̄N̂ + N̂ .

Finding the k̂ coefficients d̂drl = ξT
l f̂

cdr/ηl costs (N̂ + 1)k̂ and the computation of P̂ d̂dr leads to

a cost of k̂N̂ . In summary, the total cost of ISBFM-DR is

(4p̄+ 6k̄ + 9 + γ̄) + 2k̄2N̄ +
(
k̄ + p̄

)3

(4p̂+ 6k̂ + 9 + γ̂) + 2k̂2N̂ +
(
k̂ + p̂

)3

+N̂3 + N̂2 + N̄N̂2 + N̄2N̂ + N̄2

+2N̄N̂ + N̄ + N̂

+2k̄N̄ + 2k̂N̂ + k̂ + k̄

(7.33)

In the case of k̂ = N̂ , when the enriched part is unreduced, the cost is

(4p̄+ 6k̄ + 9 + γ̄) + 2k̄2N̄ +
(
k̄ + p̄

)3

+N̂3 + N̄N̂2 + N̄2N̂ + N̄2

+2N̂2 + 2N̄N̂ + N̄

+2k̄N̄ + k̄ + N̂

(7.34)

The operation counts for the solving the full system, and the reduced systems from ISBFM-UR

and ISBFM-DR are listed in Table 7.1.

From Table 7.1, it appears that the computational cost in ISBFM-DR is slightly lower than that

in ISBFM-UR from the fact that k̄2+k̂2 < k2 and k̄3+k̂3 < k3. Both of these two MOR approaches
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Table 7.1: Operation counts

Procedure Operation counts (op)

Full system N3

6
+N2

(4p+ 6k + 9 + γ)pN
ISBFM-UR +2k2N + (k + p)3

+(N + 1)k + kN

(4p̄+ 6k̄ + 9 + γ̄)p̄N̄
+2k̄2N̄ + (k̄ + p̄)3

+(4p̂+ 6k̂ + 9 + γ̂)p̂N̂

ISBFM-DR +2k̂2N̂ + (k̂ + p̂)3

+2N̂2 + N̄N̂2 + N̄2N̂ + N̄2

+2N̄N̂ + N̄ + N̂

+2k̄N̄ + 2k̂N̂ + k̄ + k̂

are more efficient than solving the fine scale system directly, due to the fact that N̄2 < N3 and

N̂2 < N3.

7.5 Numerical Examples and Discussions

In this section, we recall the numerical examples of Chapters 4 and 6 to verify and validate the

proposed MOR method, ISBFM-UR and ISBFM-DR.

7.5.1 L-shaped Domain Poisson Problem

The L-shaped domain Poisson problem presented in Section 4.3.1 is further studied on the con-

vergence and the conditioning of the reduced systems. The relative errors in L∞, in L2 and in H1

norms between the reduced solution ur and the full solution uh , defined as

e∞ =

∥∥uh − ur∥∥
L∞

‖uh‖L∞
, e0 =

∥∥uh − ur∥∥
L2

‖uh‖L2

, e1 =

∥∥uh − ur∥∥
H1

‖uh‖H1

(7.35)

, are considered for comparison with the theoretical results from Section 7.2.
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We use these error measures to study of the accuracy of the reduced models obtained from

ISBFM-UR and ISBFM-DR. The relative error in L∞, in L2 and in H1 norm are shown in Figure

7.1, Figure 7.2 and Figure 7.3 where we observe that ISBFM-DR provides a significantly better

accuracy than that of ISBFM-UR. Even in the case of using a relatively large reduced system with

a percentage of reduction k/N close to 80%, the error of the reduced solution from ISBFM-UR is

still of the orderO(10−1). On the other hand, the solution from ISBFM-DR is much more accurate,

where even at a percentage of reduction k/N = 5%, the relative error is of the orderO(10−2) when

one and two enrichment functions are used (N̂ = 1 and 2). The error is further reduced toO(10−3)

for k/N = 5% when five enrichment functions are used (N̂ = 5). This property in ISBFM-DR

can be understood from the fact that when more enrichment basis functions are used, the need for

the smooth part of the approximation to approximate the singularity is minimized, and thus leads

to a more effective reduced order approximation. This is not the case for ISBFM-UR, where the

projection of both singular and smooth parts of the approximation significantly reduces its ability

to approximate the singularity behavior in the reduced order space as evidenced in Figures 7.1 -

7.3.

The error bounds provided in Equations (7.15) and (7.16) show that the errors in sup-norm are

related to the right-hand side vector of the reduced discrete system with dimension k according

to (4.25). The numerical results described above demonstrate that the error from ISBFM-DR is

dominated by the smooth part of the solution while the error from ISBFM-UR is dominated by the

singular solution. Table 7.2 compares the error bounds of ISBFM-UR and ISBFM-DR for the case

when N̄ = 1825 and N̂ = 1 based on the analytical derivation in (7.15) and (7.16), respectively.

The ratio of errors from these two reduced order approaches is influenced by the eigenvalues λk+1

of K and µk̄+1 of K̄c, which are also shown in Table 7.2, and as expected from (7.14), are quite

close when the same reduced dimension k is used. The ratio of error bounds also depends on

the ratio
√
N/N̄ , which is nonessential when a small number of enrichment functions is used.

Essentially, the error is strongly affected by the norms of the right-hand side vector of the full scale

and the reduced systems. In this case, we have the values ‖f‖∞ = 178.86 and ‖f̄ c‖∞ = 0.60,
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Figure 7.1: Relative error in L∞ norm for the L-shaped domain Poisson problem
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Figure 7.2: Relative error in L2 norm for the L-shaped domain Poisson problem
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Figure 7.3: Relative error in H1 norm for the L-shaped domain Poisson problem

where the sup-norm of vector f̄ c is much smaller than the sup-norm of vector f . It can be shown

that the right-hand side vector dominates the error bound and consequently ISBFM-DR has a much

smaller error. Note that the ratio of the error bounds of the two MOR methodscomputed from the

numerical solution is around the order of O(10−3), which agrees well with the theoretical results

given in (7.15) and (7.16) as shown in Table 7.2.

Next, we perform a stability analysis of the reduced systems from ISBFM-DR and ISBFM-UR.

The numerical traditional and effective condition numbers of those reduced systems are presented

in Figure 7.4 and in Figure 7.5 respectively, while the ones of the fine scale system are displayed

in Table 7.3. From the theoretical predictions in (7.24) and (7.25), the reduced systems from both

MOR methods are better conditioned than the fine scale system, which is in good agreement with

the numerical results shown in Figure 7.4 , Figure 7.5 and Table 7.3. It is worthy to note that the

reduced system from ISBFM-UR has a slightly smaller condition number than from ISBFM-DR

shown in the numerical results in Figures 7.4 and 7.5, which was also predicted from our estimation

of the traditional condition numbers given in (7.29) in Section 7.3 when (ηk̂+εN)/λ1 is sufficiently
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Table 7.2: Ratio of error bounds of ISBFM-DR and ISBFM-UR for L-shaped domain Poisson
problem obtained from numerical results

k/N 0.5% 1% 5% 10% 20%

λk+1 4.50 10−2 9.92 10−2 5.16 10−1 9.01 10−1 1.27 100

µk̄+1 3.91 10−2 9.89 10−2 5.01 10−1 8.98 10−1 1.27 100

C̄2

√
N̄µ−1

k̄+1
||f̄ c||∞

C̄1

√
Nλ−1

k+1||f ||∞
1.75 10−3 1.53 10−3 1.57 10−3 1.53 10−3 1.52 10−3

Table 7.3: Numerical traditional and effective condition numbers of the full system for the L-
shaped domain Poisson problem

N̄ = 1825, N̂ = 1 N̄ = 1825, N̂ = 2 N̄ = 1825, N̂ = 5

Cond(K) 3.73 107 6.98 108 1.43 1011

CondEff(K) 5.73 106 6.93 108 7.30 1010

large.

The traditional condition numbers for both reduced systems ISBFM-UR and ISBFM-DR are

further investigated in details. Taking three cases of reduced systems as examples, the traditional

condition numbers of both reduced models were computed numerically and are compared in Table

7.4. The bound of condition number for ISBFM-DR is obtained from (7.27) and shown in Table

7.5. It can be observed that the reduced system from ISBFM-UR has a smaller condition number

than that from ISBFM-DR, and this agrees well with the theoretical prediction provided in (7.29).

The theoretical results on eigenvalues provided in Section 7.3 can be verified numerically such that

λur1 = λ1 and λdr1 ≥ λ1, where λ1 is the smallest eigenvalue of K and λurk = λk, where λk is the

k-th eigenvalue ofK. The interlacing property in (7.14) is also validated, where the eigenvalue µk̄

of K̄c is less than or equal to λurk . From Table 7.4, we see that the smallest eigenvalues λur1 and λdr1
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Figure 7.4: Traditional condition number for the L-shaped domain Poisson problem
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Figure 7.5: Effective condition number for the L-shaped domain Poisson problem
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Table 7.4: Numerical traditional condition numbers for ISBFM-UR and ISBFM-DR for the L-
shaped domain Poisson problem

k = k̄ + N̂ λur1 λurk λdr1 λdrk λurk /λ
ur
1 λdrk /λ

dr
1

k = 5
2.64 10−6 1.98 10−2 2.64 10−6 1.84 7.49 103 6.96 105

k̄ = 4, N̂ = 1
k = 10

1.42 10−7 4.50 10−2 1.42 10−7 4.39 3.16 105 3.09 107

k̄ = 8, N̂ = 2
k = 20

6.91 10−10 9.97 10−2 6.91 10−10 21.15 1.44 108 3.06 1010

k̄ = 15, N̂ = 5

Table 7.5: Theoretical bounds of the traditional condition number from ISBFM-DR for the L-
shaped domain Poisson problem

k = k̄ + N̂ µk̄ ηN̂ εN
µk̄ + ηN̂ + εN

λ1

k = 5
1.83 10−2 1.84 2.39 10−1 7.92 105

k̄ = 4, N̂ = 1
k = 10

3.89 10−2 4.38 5.18 10−1 3.47 107

k̄ = 8, N̂ = 2
k = 20

8.80 10−2 21.11 1.76 3.32 1010

k̄ = 15, N̂ = 5

of both reduced systems ISBFM-UR and ISBFM-DR are very close, which is a result we predicted

from Section 7.3. The main difference in condition number from the two reduced models is due

to the difference of their maximal eigenvalues λurk and λdrk . The eigenvalue λdrk is bigger than λurk ,

which can be explained by the fact that K̂ has not been reduced in ISBFM-DR, and the stability

of the system from ISBFM-DR is greatly affected by the largest eigenvalue ηN̂ of K̂ . In Table

7.5, we see that the estimations of the bound of condition numbers in ISBFM-DR are in good

agreement with the numerical values of the condition numbers listed in the last column of Table

7.4.
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Figure 7.6: Relative error in L∞ norm for the cracked beam Poisson problem

7.5.2 Cracked Beam Poisson Problem

The accuracy and stability of the proposed MOR methods are also investigated for the cracked

beam Poisson problem as described in Section 4.3.2. The relative errors in L∞, in L2 and in H1

norms from (7.35) are also considered in the discussion of convergence.

From Figure 7.6, Figure 7.7 and Figure 7.8, it again shows that ISBFM-DR provides the best

accuracy measured in L∞, L2 and H1 norms, especially in the cases where the dimension of the

fine scale system is greatly reduced. In this test, the reduced solution from ISBFM-UR starts to

recover the full model with an order of accuracy close toO(10−2) when the reduced dimension k is

greater than 20% of the full dimension N . However, for a lower percentage of k/N , for example,

less than 10%, the solution from ISBFM-UR still doesn’t capture the overall behavior of the full

model. Note that the accuracy of the reduced solution from ISBFM-DR is improved when more

enrichment functions are used.

The ratio of analytical error bound for ISBFM-DR from 7.16 to the one for ISBFM-UR from

7.15 is given in Table 7.6 for the case of N̄ = 1152 and N̂ = 1. Again, we see from the results
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Figure 7.7: Relative error in L2 norm for the cracked beam Poisson problem
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Figure 7.8: Relative error in H1 norm for the cracked beam Poisson problem
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Table 7.6: Ratio of error bounds of ISBFM-DR and ISBFM-UR for cracked beam Poisson problem
obtained from numerical results

k/N 0.5% 1% 5% 10% 20%

λk+1 4.46 10−2 1.05 10−2 4.85 10−1 8.65 10−1 1.22 100

µk̄+1 4.02 10−2 9.27 10−2 4.84 10−1 8.65 10−1 1.22 100

C̄2

√
N̄µ−1

k̄+1
||f̄ c||∞

C̄1

√
Nλ−1

k+1||f ||∞
2.23 10−2 2.28 10−2 2.02 10−2 2.02 10−2 2.02 10−2

that the error in ISBFM-DR is smaller than that in ISBFM-UR, with the ratio of error bounds of

the order O(10−2). These analytical results on error prediction agree quite well with the numerical

results in Figure 7.6. In this test, the comparison of the computed norms ‖f‖∞ = 25.90 and

‖f̄ c‖∞ = 0.90 confirms that the right-hand side of reduced system dominates the estimates of

error bounds.

The traditional and effective condition numbers of the reduced systems for this cracked beam

Poisson problem can also be observed in Figure 7.9 and Figure 7.10 and similar observations as that

in the L-shaped domain Poisson problem can be made. Compared to the condition numbers of the

fine scale system shown in Table 7.7, we can see that the reduced systems are better conditioned.

In this case, the condition numbers of both reduced models ISBFM-UR and ISBFM-DR are close,

even though the reduced system from ISBFM-UR is slightly better conditioned than the one from

ISBFM-DR.

A comparison of the condition numbers from ISBFM-UR and ISBFM-DR is presented in Table

7.8 for three different cases of reduced models and the theoretical bound of condition number for

ISBFM-DR is given in Table 7.9. Again, numerical results agree with the theoretical prediction

given in (7.29), which confirms that the reduced system from ISBFM-UR has a smaller condition

number than that from ISBFM-DR. Similar to the observation from the L-shaped domain Poisson

problem, the eigenvalue ηN̂ from the non-smooth stiffness sub-matrix K̂ is the dominant term that
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Figure 7.9: Traditional condition number for the cracked beam Poisson problem
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Figure 7.10: Effective condition number for the cracked beam Poisson problem
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Table 7.7: Numerical traditional and effective condition numbers of the full system for the cracked
beam Poisson problem

N̄ = 1152, N̂ = 1 N̄ = 1152, N̂ = 2 N̄ = 1152, N̂ = 5

Cond(K) 2.94 106 5.71 108 2.33 109

CondEff(K) 2.45 105 1.58 106 1.84 108

Table 7.8: Numerical traditional condition numbers for ISBFM-UR and ISBFM-DR for the
cracked beam Poisson problem

k = k̄ + N̂ λur1 λurk λdr1 λdrk λurk /λ
ur
1 λdrk /λ

dr
1

k = 5
3.35 10−5 3.46 10−2 3.35 10−5 4.43 10−1 1.03 103 1.32 104

k̄ = 4, N̂ = 1
k = 10

1.73 10−7 6.91 10−2 1.73 10−7 4.45 10−1 4.00 105 2.57 106

k̄ = 8, N̂ = 2
k = 20

4.24 10−8 1.49 10−1 4.24 10−8 4.51 10−1 3.50 106 1.06 107

k̄ = 15, N̂ = 5

Table 7.9: Theoretical bounds of the traditional condition number from ISBFM-DR for the cracked
beam Poisson problem

k = k̄ + N̂ µk̄ ηN̂ εN
µk̄ + ηN̂ + εN

λ1

k = 5
2.03 10−2 4.41 10−1 1.08 10−1 1.70 104

k̄ = 4, N̂ = 1
k = 10

6.13 10−2 4.41 10−1 2.00 10−1 4.06 106

k̄ = 8, N̂ = 2
k = 20

1.19 10−1 4.43 10−1 3.05 10−1 2.05 107

k̄ = 15, N̂ = 5
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Figure 7.11: Relative error in L2 norm for the linear elastic fracture problem

influences the bound of the condition number of the reduced stiffness matrix from ISBFM-DR.

7.5.3 Linear Elastic Fracture Problem

The performance of the proposed reduction methods is also examined for the linear elastic fracture

problem as described in Section 6.3. The relative errors in L2 and in H1 norms are considered in

the discussion of convergence.

Figure 7.11 and Figure 7.12 show the relative error plots in L2 and in H1 norms, respectively.

It can be observed that the reduced model from ISBFM-UR does not converge , and similar phe-

nomenon is also observed in ISBFM-DR for the case of using one set of enrichment functions.

However this non-convergence behavior is corrected in ISBFM-DR when more than one set of

enrichment functions are used, while in ISBFM-UR the situation remains the same using more

enrichment functions.

For the case of N̄ = 4608 and N̂ = 1, the ratio of analytical error bound for ISBFM-

DR to the one for ISBFM-UR is shown in Table 7.10 for different orders of reduction k/N =
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Figure 7.12: Relative error in H1 norm for the linear elastic fracture problem

Table 7.10: Ratio of error bounds of ISBFM-DR and ISBFM-UR for the linear elastic fracture
problem obtained from numerical results

k/N 0.5% 1% 5% 10% 20%

λk+1 1.60 103 3.45 103 1.69 104 2.33 104 3.16 104

µk̄+1 1.56 103 3.45 103 1.68 104 2.32 104 3.16 104

C̄2

√
N̄µ−1

k̄+1
||f̄ c||∞

C̄1

√
Nλ−1

k+1||f ||∞
1.45 10−1 1.41 10−1 1.41 10−1 1.41 10−1 1.41 10−1
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Table 7.11: Numerical traditional and effective condition numbers of the full system for the linear
elastic fracture problem

N̄ = 4608, N̂ = 1 N̄ = 4608, N̂ = 2 N̄ = 4608, N̂ = 3

Cond(K) 2.80 1012 4.39 1012 1.05 1013

CondEff(K) 4.73 109 7.34 109 1.11 1010

0.5%, 1%, 5%, 10%, 20%. The theoretical ratio of error bounds of the two MOR methods is of the

order O(10−1) , which is in good agreement with the numerical results in Figure 7.11. As shown

in the theoretical prediction in Table 7.10, the error of the two MOR methods is mainly due to the

values of the norms ‖f‖∞ = 2.40 106 and ‖f̄ c‖∞ = 3.34 105, indicating that the right hand side

vectors of the full and reduced systems indeed control the error behavior of the two MOR methods.

Figure 7.13 and Figure 7.14 present the traditional and effective condition numbers of the

reduced systems with percentage of reduction k/N up to 11%, and the condition numbers of the

fine scale system is also shown in Table 7.11 for comparison. The reduced system from ISBFM-UR

is much better conditioned than the one from ISBFM-DR. This result confirms that the conditioning

of ISBFM-DR is sacrificed by its accuracy compared to the ISBFM-UR method. However, both

MOR methods offer better conditioning in the reduced systems than the fine scale system.

The characteristics of the condition number of the two MOR systems is further studied. The

numerical condition numbers from ISBFM-UR and ISBFM-DR are presented in Table 7.12 for

three different cases of reduced models, while the analytical condition numbers for ISBFM-DR

are given in Table 7.13. From Table 7.12, it is observed that the reduced system from ISBFM-

UR does yield a smaller condition number than that from ISBFM-DR. It is also confirmed from

the theoretical analysis in Table 7.13 that the eigenvalue ηN̂ from the non-smooth stiffness sub-

matrix K̂ and the eigenvalue εN from K ′ strongly influence the bound of the condition number

of the reduced system from ISBFM-DR. The contribution of εN to the conditioning of the reduced

system reflects the influence of the unreduced enrichment part on ISBFM-DR reduced system.
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Figure 7.13: Traditional condition number for the linear elastic fracture problem
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Figure 7.14: Effective condition number for the linear elastic fracture problem
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Table 7.12: Numerical traditional condition numbers for ISBFM-UR and ISBFM-DR for the linear
elastic fracture problem

k = k + N̂ λur1 λurk λdr1 λdrk λurk /λ
ur
1 λdrk /λ

dr
1

k = 5
7.12 10−4 8.63 101 7.88 10−4 3.92 107 1.21 105 4.98 1010

k = 4, N̂ = 1
k = 10

4.57 10−4 4.96 102 4.70 10−4 1.36 108 1.09 106 2.90 1011

k = 8, N̂ = 2
k = 20

3.07 10−4 1.12 103 3.11 10−4 1.33 109 3.63 106 4.29 1012

k = 17, N̂ = 3

Table 7.13: Theoretical bounds of the traditional condition number from ISBFM-DR for the linear
elastic fracture problem

k = k + N̂ µk ηN̂ εN
µk + ηN̂ + εN

λ1

k = 5
8.63 101 4.07 103 1.96 109 2.76 1012

k = 4, N̂ = 1
k = 10

3.69 102 8.39 106 1.98 109 4.36 1012

k = 8, N̂ = 2
k = 20

9.95 102 1.27 109 2.81 109 1.33 1013

k = 17, N̂ = 3

103



Chapter 8

Conclusion

8.1 Conclusion

MOR techniques for enriched meshfree methods for problems with singularities and discontinuities

have been presented in this dissertation. These techniques acknowledge the fact that the reduced

approximations are greatly affected by the behavior of the full solution. In the proposed approach,

the full approximation consisting of a smooth part from the RK approximation and a non-smooth

part using enrichment basis functions has been reduced by a uniform and a decomposed MOR

methods. Analytical investigation on the errors, stability, and efficiency of the reduced systems

from the proposed MOR methods is also provided in this work.

Under the framework of ISBFM, a modified Galerkin formulation is obtained in which the

non-smooth part of solution appears only in the boundary integrals away from the singularity

point. This approach avoids the need of higher order integration in the domain and renders the full

solution with enhanced accuracy which yields a more effective decomposed reduction method. A

formulation under the framework ISBFM has also been developed for fracture mechanics prob-

lems, for which appropriate enrichment functions have been derived. Enrichment bases that satisfy

the governing equation near the singularity points are introduced for fracture mechanics.

Two ISBFM based reduced order projections were developed for problems with singularities.
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The first is a uniform reduction method, termed ISBFM-UR, that projects all smooth and non-

smooth DOFs to the reduced order space. The second is a decomposed reduction method, named

ISBFM-DR, that intends to retain the singular behavior of the full solution in the reduced order

system. Since the number of enrichment bases used for the non-smooth solution is relatively small

compared to the smooth DOF, the order reduction of only the smooth part of the solution offers a

better accuracy. The performance of the two proposed MOR method is further analyzed through a

theoretical error estimation and stability analysis of the reduced order models.

Error bounds of the proposed ISBFM-UR and ISBFM-DR methods have been derived and vali-

dated with numerical results. The stability of the two MOR methods has also been investigated and

the bounds for the condition numbers of the reduced linear systems have been derived. In addition,

the total operational counts of the full and reduced systems have been estimated analytically to

provide an estimate of the computational efficiency of the proposed methods.

The proposed MOR methods have been applied to well-known Poisson problems such as a

cracked beam problem and a L-shaped domain problem which represent problems with different

order of singularities. A linear elastic fracture mechanics problem has also been investigated to

study the performance of the proposed MOR methods. The numerical and analytical investigation

of the proposed MOR methods show that keeping the enrichment bases or the non-smooth part of

solution unprojected in the ISBFM-DR method allows significant reduction of the discrete system

while properly capturing the singularity behavior of the model problems. Numerical results also

reveals that the proposed ISBFM-DR with decomposed reduction offers better accuracy and faster

convergence than ISBFM-UR with uniform reduction of the entire finite dimensional space of the

fine scale model. It is also demonstrated numerically and confirmed analytically that while the

ISBFM-DR method offers a substantial accuracy and convergence over the ISBFM-UR method,

the condition number of the former is slightly increased compared to the later one.
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8.2 Recommandations for Future Research

This research focuses on development of MOR methods singularity problem without time varia-

tion. It is recommended that this work be used as the basis for extension to singularity problems

subjected to transient dynamics. This will allow the reduced order modeling of crack propagation

and shock dynamics. Further, incorporation of model order reduction with adaptive refinement

could provide an optimal balance of computational accuracy and efficiency for many nonlinear

and dynamic problems.
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