
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Enhanced sampling development for accessing long time scale protein dynamics

Permalink
https://escholarship.org/uc/item/44x6z124

Author
Pierce, Levi C.T.

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/44x6z124
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO 

Enhanced Sampling Development  

for  

Accessing Long Time Scale Protein Dynamics 

 

A dissertation submitted in partial satisfaction of the requirements for the degree of 

Doctor of Philosophy 

in  

Chemistry 

by 

Levi C.T. Pierce 

 

 

 

 

 

 

 

Committee in charge: 

Professor J. Andrew McCammon, Chair 
Professor Michael Galperin 
Professor Ghorisankar Ghosh 
Professor Mike Gilson 
Professor Elizabeth A. Komives 
Professor John Weare 

2012 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Levi C.T. Pierce, 2012 

All rights reserved. 

 



	
  

	
   iii	
  

The dissertation of Levi C.T. Pierce is approved, and it is acceptable in quality and 
form for publication on microfilm and electronically: 
 

 

 

 

 

 

Chair 

 

University of California, San Diego 

2012 

Section	
  1.01 Signature	
  Page	
  
 

 

 

 

 

 

 

 

 

 



	
  

	
   iv	
  

EPIGRAPH 
 

 

 

Computers are incredibly fast, accurate, and stupid.  Human beings are incredibly 

slow, inaccurate, and brilliant.  Together they are powerful beyond imagination. 

Albert Einstein 
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ABSTRACT OF THE DISERTATION 
	
  

Enhanced Sampling Development  

for  

Accessing Long Time Scale Protein Dynamics 

 

by 

 

Levi C.T. Pierce 

Doctor of Philosophy in Chemistry 

University of California, San Diego, 2012 

Professor J. Andrew McCammon, Chair 

 

Computational modeling has played a great role in solving many questions in 

biochemical and biomedical research.  However, many biologically relevant processes 

occur on long time scales, which are inaccessible to conventional modeling 

techniques.  Accessing these long time scales has been a great challenge for 

computational scientists, which has led to the development of numerous methods for 

enhanced sampling.  In this work the well established accelerated molecular dynamics 

(aMD) method is implemented into several different codes in both a classical 

mechanics framework as well as a quantum mechanics framework in order to access 

events occurring on time scales otherwise inaccessible with conventional molecular 

dynamics codes.   
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Recently there has been a great interest in developing codes to run on graphics 

processing units (GPUs), which, have been shown to be well suited for conventional 

molecular dynamics.  The research presented in this dissertation shows that the 

combination of the highly parallelized, inexpensive GPU and the efficient enhanced 

sampling method, aMD, allow access to events occurring on the millisecond time 

scale.  Importantly, this development is made available to the general scientific 

community with the release of the Amber12 simulation package.     
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I Accessing events on various time scales with simulation 
	
  

Physical and biological events occur on a range of time scales spanning 12 

orders of magnitude, from femtoseconds (10-15 s), less than the time it takes for a 

chemical bond to vibrate, to milliseconds (10-3s), the time it takes for some proteins to 

fold.  Numerous other interesting events fall between these two extremes such as 

proton transfer occurring on a picosecond (10-12s) time scale, side chain flips and 

rotations occurring on the nanosecond (10-9s) time scale, and large conformational 

changes occurring on the microsecond (10-6s) time scale.  While numerous 

experimental techniques can access these various time scales an atomistic 

representation is most often lacking or difficult to acquire.  Computational modeling 

and simulation can be used to provide an all atom description, which can be used to 

reproduce experimental observables.    

Ultimately, one would like to not only validate but also predict experimental 

results but we are limited in both a temporal and spatial regime due to the 

computational cost of running long simulations and the complexity of the simulation 

being conducted.  Currently, conventional MD (cMD) carried out on large super 

computers for several weeks can access time scales up to several microseconds for 

moderately sized proteins (1500 residues).  One of the great recent advancements in 

the field of computational science has been David E. Shaw’s specialized super 

computer, Anton, which has allowed one of the first millisecond long simulations 

(1,000,000ns) to be carried out on BPTI1.  While the DE Shaw Research group has 

graciously provided time on an Anton machine, access is still limited to only a handful
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of research groups.  Therefore, the challenge of accessing biological events on long 

time scales using conventional resources is still a very active area of research. 

 Large conformational changes occurring within a protein are often associated 

with long time scale dynamics neatly characterized by SAXS and NMR experiments.  

These large conformational changes are typically characterized by infrequent 

transition events, the protein moves from one-energy minima to another, usually 

involving a high-energy barrier.  Using transition-state theory one can compute rate 

constants directly for these transition processes and begin to build a coarse network of 

transition probabilities.  If one knows a priori the reaction pathway there are 

numerous methods available to drive the system along the pathway such as meta-

dynamics, adaptive biasing force, and umbrella sampling.  However, one generally has 

no idea what pathway a biomolecule might take when transitioning from one state to 

another and therefore, some variant of conventional MD must be applied to explore 

the energy landscape.  Furthermore, a pathway cannot be defined if only one 

conformation of a protein is known a priori and therefore, methods that assume an 

initial and final state are not applicable.   

The essential problem of cMD is our protein of interest remains trapped in a 

metastable state for a long time effectively showing no exploration of conformational 

space in the conventional timespan of a typical simulation.  In order to increase the 

transition rate of escape out of these metastable states several forms of enhancing 

transition rates have been developed, namely, parallel-replica dynamics2, 

hyperdynamics3, and temperature-accelerated dynamics4.  The focus of this work is 

based on hyperdynamics first proposed by Arthur F. Voter, which, constructs an 
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auxiliary system in such a way that the dynamics are faster than cMD, while enforcing 

that the modified system maps onto the unmodified system by a suitable 

renormalization of time3.   

In this approach, the auxiliary system is obtained by adding a nonnegative bias 

potential ΔVb(r) to the potential of the original system V(r) so that the height of the 

barriers between different states is effectively reduced.  Following the approach of 

Voter, Donald Hamelberg applied this technique to a biomolecule system within the 

framework of the Amber simulation package, calling it accelerated molecular 

dynamics (aMD).   Accelerated	
  MD	
  modifies	
   the	
   energy	
   landscape	
   by	
   adding	
   a	
  

boost	
  potential,	
  ΔV(r),	
  to	
  the	
  original	
  potential	
  energy	
  surface	
  when	
  V(r)	
  is	
  below	
  

a	
  pre-­‐defined	
  energy	
  level	
  E	
  5	
  ,	
  as 

 Δ! ! =   
0,                                                    ! !   ≥ !
(!!! ! )!

!  !(!!! ! )
                ! ! < !                                  (I.1) 

where α modulates the depth and the local roughness of the energy basins on the 

modified potential. In principle, this approach also allows the correct canonical 

average of an observable, calculated from configurations sampled on the modified 

potential energy surface, to be fully recovered from the accelerated MD simulations. 

In order to simultaneously enhance the sampling of internal and diffusive degrees of 

freedom a dual boosting approach was employed, based on separate torsional and total 

boost potentials as 6 

                                    ! ! = !! ! +   !!(!)                                                           (I.2) 

!∗(!) = !! ! + !! ! + Δ!! ! + Δ!!(!)                    (I.3) 
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where Vo(r) is the original potential, Vt(r) is the total potential of the torsional terms, 

ΔVt(r) and ΔVT(r) are the boost potentials applied to the torsional terms Vt(r) and the 

total potential energy VT(r), respectively. 

Since the first implementation by Hamelberg5 the aMD method has been 

successfully applied to study numerous biological systems7-9.  While efficient 

conformational space exploration can be carried out without any prior knowledge of 

the energy landscape, obtaining time-correlated observables is currently not possible 

with a single aMD simulation.  Another limitation of the method is it is often difficult 

to recover statistics on the unbiased energy surface due to large perturbations in the 

bias, which give rise to large weights associated with very few of the snapshots from 

the simulation.  Given these limitations the aMD method is well suited for generating 

a suite of starting conformations which can be coupled with more rigorous free energy 

methods such as ABF to provide an overall accurate description of the free energy 

landscape.10  In this work several new implementations are described including an 

implementation in an ab initio framework and a fast and efficient classical MD 

version, which has been optimized for highly parallelized computing and graphics 

processing units (GPUs).   

 The advancement of computational science on conventional graphic processing 

units (GPUs) has allowed researchers efficient and inexpensive access to 10s to 100s 

of microseconds of simulation time on just a single desktop computer9,11,12.  Several 

groups have been utilizing the power of GPUs, which has been driven by the 

introduction of a simple application programming interface called compute unified 

device architecture (CUDA).  Using CUDA M. J. Harvey and G. De Fabritiis released 



	
   	
  

	
  

5	
  

commercial software, ACEMD in 2009, which was one of the first codes to run 

explicit water molecular dynamics simulations on the GPU11.  In the same year Vijay 

Pande and the OPENMM consortium released an open source CUDA cMD code, 

which was linked into the GROMACS engine12.   More recently John E. Stone and 

Klaus Schulten have developed a GPU implementation for NAMD and perhaps more 

importantly several analysis tools within VMD which take advantage of the GPU13,14.   

One of the fastest GPU implementations, developed by Scott Le Grand and 

Ross Walker, is built into the framework of the Amber molecular dynamics 

package15,16.  The Amber implementation runs the entire simulation on the GPU 

whereas other codes such as NAMD only use the GPU to compute non-bonded 

interactions.  One important question to ask is how long will this technology be 

around because a great deal of time is needed to port scientific codes to the GPU?  

With the gaming industry ultimately driving the demand for GPU technology and not 

the computational science community these devices will be around for the next five 

years at least and will be used to push the bounds of science. 

 Chapter 2 presents the implementation of the aMD method within the Carr-

Parrinello molecular dynamics code (CPMD).  In this work it is demonstrated that 

access to events that cannot be captured using conventional CPMD and would 

normally take a long time to simulate, such as proton transfer and the rearrangement of 

covalent bonds can be enhanced using aMD.  Using two examples, the double proton 

transfer reaction in formic acid dimer (FAD) and the hypothetical adiabatic ring-

opening and subsequent rearrangement reactions in methylenecyclopropane (MCP), it 

is demonstrated that ab initio aMD can be readily employed to efficiently explore the 
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reactive potential energy surface (PES), allowing the prediction of chemical reactions 

and the identification of meta-stable states. 

Chapter 3 presents an aMD implementation that allows the simulation to 

adaptively change the acceleration as it explores phase space.  Adaptive aMD (Ad-

aMD) is an efficient and robust conformational space-sampling algorithm that is 

particularly well suited to proteins with highly structured potential energy surfaces 

exhibiting complex, large-scale collective conformational transitions. Ad-aMD 

simulations of substrate-free P450cam reveal that this system exists in equilibrium 

between fully and partially open conformational states. The mechanism for substrate 

binding depends on the size of the ligand. Larger ligands enter the P450cam binding 

pocket, and the resulting substrate-bound system is trapped in an open conformation 

via a population shift mechanism. Small ligands, which fully enter the binding pocket, 

cause an induced-fit mechanism, resulting in the formation of an energetically stable 

closed conformational state. These results are corroborated by recent experimental 

studies and potentially provide detailed insight into the functional dynamics and 

conformational behavior of the entire cytochrome-P450 super-family. 

Chapter 4 presents the synthesis of the parallel power of conventional gaming 

graphics cards with the enhanced sampling method of aMD.  This work combines the 

enhanced sampling method, accelerated molecular dynamics (aMD) with the inherent 

power (as implemented in Amber) of graphics processor units (GPUs) and is applied 

to the study of Bovine Pancreatic Trypsin Inhibitor (BPTI).  A 500ns aMD simulation 

is compared to a previous millisecond unbiased brute force MD simulation carried out 

on BPTI showing the same conformational space is sampled by both approaches.  The 
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correct relative populations defined by the χ1, χ2, and χ3 dihedral angles of the 

disulfide bond C14-C38 are observed and improved agreement with observed 

chemical shift differences from prior experimental work is obtained.  To our 

knowledge this represents the first implementation of aMD on GPUs and also the 

longest aMD simulation of a biomolecule run to date. Our implementation will be 

made available to the community with the release of the Amber software suite (v12) 

enabling researchers routine access to ms events sampled from dynamics simulations 

using off the shelf hardware.   
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II Accelerating chemical reactions: Exploring reactive free-
energy surfaces using accelerated ab initio molecular dynamics 
 

II.A  Abstract 
A biased potential molecular dynamics simulation approach, accelerated 

molecular dynamics (aMD), has been implemented in the framework of ab initio 

molecular dynamics for the study of chemical reactions. Using two examples, the 

double proton transfer reaction in formic acid dimer (FAD) and the hypothetical 

adiabatic ring-opening and subsequent rearrangement reactions in 

methylenecyclopropane (MCP), it is demonstrated that ab initio aMD can be readily 

employed to efficiently explore the reactive potential energy surface (PES), allowing 

the prediction of chemical reactions and the identification of meta-stable states. An 

adaptive variant of the aMD method is developed, which additionally affords an 

accurate representation of both the free energy surface and mechanism associated with 

the chemical reaction of interest and can also provide an estimate of the reaction rate. 

II.B Introduction 
The study of chemical reactions using quantum chemistry calculations is a 

well-established and active field of research. The general protocol for such studies 

involves the determination of local energy minima (reactant and product states) and 

saddle points (transition states) on the potential energy surface (PES). An optimal 

reaction pathway, the minimum energy path (MEP), connecting the reactant, transition 

and product states is then determined along with the associated energy profile.1-9 
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Despite the fact that these methods are well established, the determination of transition 

states can be very difficult and computationally expensive. In general, prior 

knowledge of the PES is required including at the very least an accurate representation 

of the reactant and product states as well as any putative intermediates. Furthermore, 

these strategies often fail for systems with a large number of degrees of freedom, when 

entropic effects are important and the free energy surface needs to be explored.  

In principle, ab initio molecular dynamics (AIMD) simulations10 are ideally 

suited to exploring free energy surfaces of complex systems, however, the potential of 

AIMD to study chemical reactions is hindered by the fact that these processes occur 

on time-scales that are significantly longer than those accessible using standard ab 

initio MD methodologies. Chemical reactions, i.e. the cleavage or formation of one or 

more covalent bonds, and conformational rearrangements within a molecule occur 

when a system migrates from one local energy minimum to another. The energy 

barriers that separate the reactant and product states usually vary from 5-20 kcal/mol 

and therefore chemical reactions occur on time-scales ranging from hundreds of 

nanoseconds to milliseconds.  

Despite the sustained and rapid increase in available computational power and 

the development of efficient simulation algorithms, AIMD simulations of even small 

isolated molecules are generally limited to time-scales of hundreds of picoseconds. In 

the last two decades considerable progress has been made in the development of more 

sophisticated methods to explore both the configurational and reaction space of 

molecular systems more efficiently,11,12 allowing the study of slow molecular motions 

and rare events. In general, these methods can be divided into two groups: The first 
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involves the identification of transition pathways between known initial (reactant) and 

final (product) states or for a known reaction coordinate. Such methods include 

targeted molecular dynamics,13,14 (and constrained dynamics in general15) transition 

path sampling16,17 and essential molecular dynamics.18 The second group contains 

those methods that efficiently explore large areas of the PES without necessarily 

requiring knowledge of the reaction coordinate and without imposing constraints, 

allowing for the rapid identification of thermodynamically dominant regions. These 

methods include replica exchange MD methods,19,20 meta-dynamics,21 hyper 

dynamics,22 and accelerated molecular dynamics (aMD).23 The principle behind aMD 

is to add a continuous, non-negative bias to the actual potential energy surface which 

raises the low energy regions on the potential energy landscape, decreasing the 

magnitude of the energy barriers and accelerating the exchange between low energy 

configurational states, while still maintaining the essential details of the underlying 

PES. One of the most favorable characteristics of this method is that it yields a 

canonical average of an observable, so that thermodynamic and other equilibrium 

properties can be accurately determined.  

In the framework of classical molecular dynamics, aMD has already been 

successfully employed to study the slow time-scale dynamics of poly-peptides24,25 and 

proteins, such as H-Ras,26 ubiquitin27 and IκBα.28 The enhanced conformational space 

sampling afforded by aMD in these studies was shown to significantly improve the 

theoretical prediction of experimental NMR observables, such as residual dipolar 

couplings,27,28 scalar J-couplings29 and chemical shifts,30 which are sensitive to 

dynamic averaging on the micro- to millisecond time-scale. As a robust free energy 
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sampling method, classical aMD has also been successfully combined with molecular 

modeling approaches to study the conformational behavior of natively unstructured 

proteins.31 aMD used in conjunction with classical MD is however severely limited in 

its applicability due to the limitations of standard force fields, in particular their 

inability to describe chemical reactions.  

In this paper, we therefore explore the possibility of using the accelerated 

molecular dynamics approach in the framework of ab initio molecular dynamics, 

specifically for the study of chemical reactions. We have employed standard aMD and 

developed a novel variant of aMD, adaptive aMD (Ad-aMD) in the framework of Car-

Parrinello molecular dynamics (CP-MD) to study two chemical reactions: The well-

known double proton transfer (DPT) event in formic acid dimer (FAD) and the 

(hypothetical) adiabatic ring-opening and rearrangement reactions of 

methylenecyclopropane (MCP). The DPT reaction of FAD and the cyclic 

rearrangement of MCP are depicted diagrammatically in Fig. 1(a) and 2(a), 

respectively. Using these two test systems, we show that the ab initio aMD approach 

and its adaptive variant can be used to predict chemical reactions, to obtain accurate 

free energy statistics for the chemical reaction of interest and also to afford a 

meaningful estimate of the associated reaction rate. 

II.C Methods 
 

In the following work, we have employed three ab initio aMD protocols: 

'Standard ab inito aMD' to explore the reactive PES, 'Adaptive ab initio aMD' (Ad-



	
   	
  

	
  

13	
  

aMD) to obtain an accurate estimate of the free energy of the chemical reaction, and a 

specific protocol of Ad-aMD used to obtain a reaction rate constant. These three 

protocols are discussed in detail below. 

II.C.1  Standard ab initio aMD 
 

Following the work of Hamelberg et al.,23 in the standard aMD formalism, a 

continuous non-negative bias potential, ΔV(r) is defined such that when the true 

(underlying) potential of the system, V(r), is below a certain, pre-defined threshold 

'boost' energy, Eb, the simulation is performed on a modified potential, V*(r) = V(r) + 

ΔV(r), but when V(r) >  Eb, the simulation is performed on the true potential [V*(r) = 

V(r)]. The modified potential, V*(r) is related to the true potential, V(r), bias potential, 

ΔV(r) and boost energy, Eb, by: 23 

 

V * r( )=V r( ) , V r( ) ! Eb
                                          (II.1) 

V * r( )=V r( )+!V(r) , V r( ) < Eb  

 

and the bias potential, ΔV(r) is defined as: 

 

!V r( )=
Eb "V r( )( )

2

!+Eb "V r( )
                                                         (II.2) 
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In the framework of CP-MD, the true potential, V(r), is defined as the density 

functional energy. The application of this bias potential, results in raising the potential 

energy wells and thereby a flattening of the PES, thus enhancing the exchange rate 

between low energy states. The extent of acceleration (i.e. how aggressively we 

enhance the configurational space sampling) is determined by the choice of the boost 

energy, Eb and the acceleration parameter, α. Configurational space sampling can be 

enhanced by either increasing the boost energy, or decreasing α. A schematic 

representation of the standard aMD protocol is shown in Fig. 3(a). It is important to 

notice that in the 'standard ab initio aMD' protocol, both acceleration parameters, Eb, 

and α, are constants.  

The aMD method also yields correct canonical averages of an observable so 

that thermodynamic and other equilibrium properties of the system can be accurately 

determined.  The corrected canonical ensemble average of the system is obtained by 

simply re-weighting each point in the configuration space on the modified potential by 

the strength of the Boltzmann factor of the bias potential, exp(βΔV[r(ti)]), at that 

particular point. When the system is on the normal potential, the bias is zero. The 

reader is referred to reference 23 for more details. 

II.C.2 ab initio Adapative aMD (Ad-aMD) 
 

In the standard aMD methodology, the system evolves on a modified PES 

which, due to the application of the bias potential, allows for enhanced configurational 

space sampling. The standard aMD protocol provides an approximate, albeit 
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somewhat crude representation of the true underlying PES. However, as is 

demonstrated in the Results section, this protocol does not allow one to specifically 

focus on a particular rare event or chemical reaction of importance. Indeed, in most 

cases, the system samples a large amount of high-energy configurational space, much 

of which is of no particular interest. In order to obtain accurate free energy statistics 

for a particular reaction, it is necessary to observe this specific process multiple times 

over. One means of selectively accelerating a particular event is adaptive aMD (Ad-

aMD). In the Ad-aMD protocol, one defines a specific reaction coordinate, φ, that 

accurately describes the particular reaction of interest, and accelerates the system 

along the pre-defined reaction coordinate. Using the approximate representation of the 

true PES, V(φ) obtained from the standard aMD simulation, a specific desired 

modified potential, V*(φ) is defined. Ideally the modified potential reflects all the 

characteristics of the underlying true PES, however, an exact reproduction of all the 

characteristics is not necessary to obtain accurate free energy statistics (as 

demonstrated below in the case of MCP). In the Ad-aMD protocol, one of the 

acceleration parameters, α, is held fixed and the other, Eb is adapted as a function of 

the reaction coordinate using the approximate representation of the true potential 

energy, V(φ), to obtain the desired, pre-defined modified potential, V*(φ). The 

functional form for Eb(φ) is obtained by simply re-arranging equation (2) as:  

 

Eb !( )=
(V * !( )!V !( )± V * !( )!V !( )( )

2
+4! V * !( )!V !( )( )

2
+V !( )     (II.3) 
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As can be seen, there are two solutions for Eb(φ). In the present work, we always use 

the solution associated with the positive.  

In the Ad-aMD simulation, when the pre-defined modified potential, V*(φ) lies 

above the true underlying potential, V(φ), the system evolves on the modified potential 

energy surface, V*(φ) and the associated adaptive bias potential is given as: 

 

!V !( )=
Eb !( ) "V !( )( )

2

!+Eb !( )"V !( )
                                        (II.4) 

 

However, when the pre-defined modified potential lies below the true underlying 

potential, the acceleration is switched off and the system evolves on the true PES, 

V(φ). In this way, during the Ad-aMD simulation, the system is only accelerated across 

a certain region of the reaction coordinate, which defines the reaction sub-space of 

interest. The desired modified potential, V*(φ) can be defined and positioned relative 

to the true potential, V(φ) at will in a physically meaningful fashion. In the present 

examples (FAD and MCP), a simple polynomial function was used to describe the 

modified potential and an initial estimate of Eb(φ) was generated using the results of 

the standard aMD trajectories. Due to thermal fluctuations and local molecular 

distortions induced by the application of the bias potential, the initial representation of 

the true underlying potential across the reaction coordinate, V(φ) obtained from the 

standard aMD simulation is not particularly accurate. As a result of this, the initial 
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estimate of the adaptive boost potential, Eb(φ), which is calculated using equation (3) 

does not immediately have the desired effect of the fixed pre-defined modified 

potential, V*(φ). In order to overcome this problem, both the underlying potential, V(φ) 

and the adaptive boost potential, Eb(φ) are updated in a history-dependent fashion 

during the Ad-aMD simulation: The reaction coordinate, φ, is divided into bins, and 

during the Ad-aMD simulation, the true potential energy, V(φ) in each bin is averaged.  

The enhanced sampling of the reaction space provides an increasingly accurate 

representation of the true underlying potential, V(φ). In the present case, Eb(φ) is 

updated every 500 MD steps using the improved potential energy statistics for V(φ), 

however the updating frequency is an adjustable parameter. The adaptive aMD 

approach can be regarded as a generalized extension of the local boost method (LBM) 

developed by Wang et. al.32 For the sake of consistency, we have chosen to use the 

same functional form of the bias potential in both standard and adaptive aMD 

protocols. However, it should be recognized that having explicitly defined the desired 

modified potential, any functional form of the bias potential could be implemented. A 

diagrammatic representation of adaptive aMD is shown in Figure II.3(b). Specific 

details of the modified potential employed for the FAD and MCP systems are 

described in the Results section. 

A free energy profile for the chemical reaction can be readily calculated from 

the Ad-aMD trajectory using the canonical ensemble free energy re-weighting 

protocol: The reaction coordinate that describes the chemical reaction of interest is 

divided into bins and the structures collected across the Ad-aMD trajectory are 
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allocated to their respective bin, φj. The effective population statistic for each 

structure, i, is given by exp(βΔV[φ(ti)]). For each bin, the population statistics are 

summed across the entire Ad-aMD trajectory to give an effective total population in 

that bin, pop(φj). The free energy profile, ΔG(φj), is then given as:  

 

!G ! j( )="RTln
pop ! j( )
pop !max( )

#

$
%
%

&

'
(
(
,                                     (II.5) 

                                                 

where pop(φmax) is the effective total population of the most populated bin.    

II.C.3 Using adaptive aMD to estimate reaction rates 
 

In both standard and adaptive aMD the system evolves on a modified potential 

at an accelerated rate with a non-linear time-scale of Δt*, given as: 23 

 

!ti
* =!texp !!V r ti( )"# $%( ) ,                                            (II.6) 

 

where Δt is the actual time-step of the simulation on the modified potential. In 

principle therefore, it is possible to estimate the time-scale of events observed during 

the aMD simulations as: 
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t* = !ti
*

i

N

" =!t exp !!V r ti( )#$ %&( )
i

N

"                                       (II.7) 

t* = t exp !!V r ti( )"# $%( ) ,  

 

where N is the total number of molecular dynamics steps performed during the whole 

simulation, and 〈exp(βΔV[r(ti)]) 〉 is the boost factor.  

However, according to transition state theory (TST),33,34 the above equation is 

only correct if the boost energy, Eb, lies below the entire transition state region. In the 

standard aMD protocol, it is rarely possible to achieve a sufficient level of acceleration 

to observe the desired transition while fulfilling this criterion. However, the same is 

not true for adaptive aMD. Once the free energy profile as a function of the chosen 

reaction coordinate is accurately determined, the adaptive boost energy and 

acceleration parameter, α, can be readily adjusted, to generate a modified potential 

with a sufficiently small energy barrier to observe the reaction of interest, while 

ensuring that the boost energy lies below the entire transition state region. This 

adaptive aMD protocol is shown schematically in Fig. II.3(c). Under these conditions, 

equation (I.7) fulfills the TST criteria and a meaningful estimate of the reaction rate 

can be obtained.            

II.C.4 Computational Details 
	
  

All molecular dynamics simulations were carried out at T=300K using an in-

house modified version of the CPMD 3.12 package.35 In the case of FAD, the system 

was placed in the center of a periodically repeating cubic box of side length L=25 a.u. 
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and the Becke (B) exchange36 and Lee, Yang, Parr (LYP) correlation37 functional was 

employed. For MCP, the system was placed in a periodically repeating cubic box of 

side length L=20 a.u. and the gradient corrected PBE density functional38 was 

employed. For both systems, a fictitious electron mass of 400 a.u. was ascribed to the 

electronic degrees of freedom and the coupled equations of motion were solved using 

the velocity Verlet algorithm with a time-step of 4 a.u. For FAD, core electrons were 

treated using the norm-conserving pseudo-potentials of Troullier and Martins39 and the 

valence orbitals were expanded in a plane-wave basis up to an energy cut-off of 70 Ry.  

For MCP, ultrasoft pseudopotentials40 were employed and the valence orbitals 

were expanded in a plane-wave basis set up to an energy cut-off of 25 Ry. Standard 

CP-MD simulations were performed using a Nosé-Hoover thermostat41 on the ions. In 

the case of the ab initio aMD and adaptive aMD simulations, a Nosé-Hoover 

thermostat was applied to both the electronic and nuclear degrees of freedom. All ab 

initio aMD and adaptive aMD simulations presented in this work were performed 

within the framework of CP-MD, however, we would like to point out that the biased 

potential simulation methods described here could equally well be implemented in the 

framework of Born-Oppenheimer MD. 

The general protocol followed in this work starts with a standard CP-MD 

simulation. This simulation provides an estimate for the true underlying density 

functional energy of the system in the thermodynamically stable state at 300K, V0, and 

provides the initial coordinates for the biased potential simulations. Standard aMD 

simulations are then performed at increasing levels of acceleration in order to explore 

the configurational space of the system, to identify potential chemical reactions and 
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meta-stable states and to acquire an approximate, albeit rather crude representation of 

the underlying PES. Using this information, a suitable reaction coordinate is defined 

and an adaptive aMD simulation is performed providing an accurate representation of 

the free energy surface for the reaction. Once an accurate description of the free 

energy surface is available, the adaptive aMD parameters can be selected in order to 

obtain an estimate of the reaction rate. 

II.D Results  

II.D.1 Exploring the configurational space of FAD using ab 
initio aMD 
	
  

In order to explore the configurational space of FAD, a series of ab initio aMD 

simulations across a variety of acceleration levels were performed. In all simulations, 

the acceleration parameter, α, was fixed at 0.016 a.u (10.04 kcal/mol) and the level of 

acceleration was controlled by varying the boost energy, Eb. The optimal acceleration 

level for enhanced configurational space sampling was observed when (Eb-V0) was set 

between 0.018 a.u. (11.3 kcal/mol) and 0.024 a.u. (15.1 kcal/mol). Within this 

acceleration regime, FAD rapidly exchanges between numerous 'states', which, are 

depicted in Fig. II.1. The variation in the true, underlying potential energy obtained 

over a 50,000 step segment from a representative aMD trajectory is depicted in Fig. 

II.4a and the different 'states' that are visited are indicated. The system clearly spends a 

large amount of time exploring high energy regions of configurational space compared 

to the two thermodynamically stable dimer states (shown in Fig. II.1(a)).  
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These high energy 'states' include an extended dimer configuration (Fig. 

II.1(b)), where both hydrogen bonds are longer than 2.5Å and the system comes close 

to complete dissociation and a twisted configuration (Fig. II.1(d)), in which one 

hydrogen bond is maintained and the angle subtended between the two monomer 

planes increases by more than 90o. Indeed, in one aMD simulation a complete 360o 

rotation of one of the monomeric units was observed. In addition to these motions, we 

also observe anti-correlated rotation of the two monomeric units in the dimer plane 

and a 'wagging' motion (tilting of the monomers out of the plane of the dimer). All 

these motions can clearly be identified as extended collective inter-monomer 

vibrational modes that are readily observed in standard CP-MD simulations of FAD. 

Around step No. 42200 (Fig. II.4(b)), we observe a double proton transfer (DPT) 

event.  

Figure II 1 (a) Diagrammatic representation of the DPT reaction in formic acid dimer. The specific 
interatomic distances required to define the reaction co- ordinate ρ1 are labeled (see text for more 
details). (b) The extended formic acid dimer system. (c) The transition state structure associated with 
DPT. (d) The twisted formic acid dimer.  
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Thermal fluctuations combined with the presence of some structural distortions 

due to the application of the bias potential result in a rather noisy and somewhat crude 

representation of the of the underlying PES shown in Fig. II.4(a). Nevertheless, 

particularly when averaging the potential energy statistics across the aMD trajectory, it 

is possible to obtain an approximate, albeit rather crude estimate of the variations in 

the potential energy of the system as it evolves from one configurational state to 

another. For example, the thermodynamically stable dimer state at 300K (Fig. II.1(a)) 

has an approximate potential energy of -77.629 a.u. (+/- 0.04 a.u.), which is very 

similar to the average potential energy obtained from the standard CP-MD simulations 

(-77.630 a.u.) and is referred to from here on as V0. The potential energy for an 

extended dimer conformation, as the system approaches dissociation, is seen to lie on 

average approximately 0.015 - 0.020 a.u. (9.5 - 12.5 kcal/mol) above V0 and the 

associated potential energy barrier for DPT is approximately 0.009 - 0.012 a.u. (5.7 – 

7.5 kcal/mol). These values obviously only provide an approximate representation of 

the true underlying PES. For the sake of comparison, the true potential energy barrier 

to DPT on the minimum energy path is 5.4 kcal/mol. We would like to point out that 

the aim of the standard aMD simulations is not to obtain accurate energetic statistics, 

but rather to enhance the configurational space sampling and to identify local energy 

minima and transition states on the PES.  
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Figure II 2 (a) Diagrammatic representation of the ring opening and rearrangement reactions of 
methylene-cyclopropane. (b) Resonance structures of the biradical TMM intermediate. 

 

Despite the relatively low potential energy barrier, the frequency of DPT 

events in standard aMD simulations is rather low. On average, we observed one DPT 

event every 250,000 steps. The bias potential obviously has a much stronger effect on 

the flexible H-bonds, and hence the inter-monomer collective vibrational degrees of 

freedom. Increasing the boost energy to larger values does not afford an increase in the 

frequency of observed DPT events, but generally results in even larger amplitude 

fluctuations of the two monomeric units, eventually resulting in dissociation of the 

dimer. Interestingly, we never observe the formation of a zwitterionic state. 

II.D.2 Obtaining an accurate free energy profile for DPT using 
Ad-aMD 
 

The standard aMD simulations described above identified the existence of 

DPT events on slow time-scales and also provided an approximate estimate for the 
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associated potential energy barrier for this reaction. In order to obtain an accurate 

estimate of the free energy barrier for this process, it is necessary to define a suitable 

reaction coordinate for the DPT event and perform adaptive aMD. Miura et al. have 

previously described two reaction coordinates to accurately describe the symmetrized 

hydrogenic movement (ρ1) and inter-monomer vibrations (ρ2) in FAD:42 

!1 = r1 ! r2+r3 ! r4                                                                   (II.8) 

!2 = R1+R2                                                                           (II.9) 

where the relevant inter-atomic distances, r1, r2, r3, r4, R1 and R2 are defined in Fig. 

II.1(a). The single reaction coordinate, ρ1, is sufficient to describe the DPT event in 

this system. Using this reaction coordinate and the approximate representation of the 

underlying PES obtained from the standard aMD trajectory with respect to ρ1, a 

desired modified potential was constructed. Ideally, the desired modified potential, 

V*(ρ1) should fulfill certain criteria: First, V*(ρ1) must lie above V(ρ1) across the 

entire reaction space of interest. Secondly, the functional form of V*(ρ1) should 

approximately mimic the true underlying PES, at least in terms of the approximate 

positions of the local energy minima and maxima with respect to the reaction 

coordinate. In order to achieve efficient configurational space sampling, the activation 

energy barriers on the modified potential should be approximately 0.5 kcal/mol.  

In a series of initial test Ad-aMD simulations, we found that if the activation 

energy barrier is defined to be much larger than this value, the frequency of observed 

reaction events decreases substantially. Alternatively, if the activation energy barrier is 

set to much smaller values, the modified potential becomes too flat, resulting in the 
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observation of random motion and the system spends a large amount of time exploring 

high energy, unrealistic regions of the configurational space during the Ad-aMD 

simulation. Finally, the modified potential should lie below the true potential outside 

the reaction space of interest. In Fig. II.5, we show how the modified potential, V*(ρ1) 

was constructed for FAD.  

The approximate PES obtained from the standard aMD simulation is 

represented by the dashed black line. The PES is clearly symmetric about ρ1=0 Å, 

with energy minima at ρ1= +/- 1.4 Å. The upper estimate of the activation energy 

barrier (located at ρ1=0 Å) lies 7.5 kcal/mol above the thermodynamically stable state 

(ρ1= +/- 1.4 Å) and the reaction space of interest lies in the region {-2.8 Å < ρ1 < +2.8 

Å}.  

Following the criteria defined above, a series of points describing the desired 

modified potential were defined manually (Fig. II.5, blue squares): At ρ1=0 Å, the 

modified PES was fixed 8.5 kcal/mol above the true potential energy of the 

thermodynamically stable state, V0, and therefore at least 1 kcal/mol above the 

estimated true PES at the transition state. The modified potential energy minima were 

placed at ρ1=+/- 1.4 Å, which coincides exactly with the minima on the true 

underlying PES and were fixed at a value such that the activation energy barrier on the 

modified potential was 0.5 kcal/mol. Two further points were defined at ρ1= +/- 2.8 Å 

that intercept the underlying PES. A few interstitial points were then manually added, 

maintaining the symmetric properties of the modified PES and these points were fitted 
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to a simple polynomial function. The resulting desired modified potential (shown in 

red in Fig. II.5) is given by:  

 

V * !1( )= 8.5!V0( )! 0.517 !1( )2+0.154 !1( )4 ! 0.01 !1( )6 ,    (II.10) 

 

where ρ1 is in units of angstroms and the polynomial coefficients are in units of 

kcal/mol.  

The adaptive boost potential Eb(ρ1) necessary to produce the desired modified 

potential was found to converge exceedingly quickly (within 50,000 steps). Fig. II.6 

depicts the enhanced configurational space sampling obtained from a 250,000-step 

(unweighted) adaptive aMD simulation of FAD projected onto the two reaction 

coordinates, ρ1 and ρ2, compared to a 250,000-step (~25 ps) standard CP-MD 

simulation. Using the adaptive aMD protocol, a DPT event is observed once every 

10,000 steps on average. This represents a 25-fold increase in the frequency of 

observed DPT events compared to the standard aMD simulations discussed above. 

After performing the free energy re-weighting protocol to obtain the correct 

Boltzmann canonical ensemble distribution, the resulting free energy profile as a 

function of ρ1 is shown in Fig. II.7. The free energy barrier for DPT is 6.5 kcal/mol, 

which is in excellent agreement with the value of 6.4 kcal/mol found in a previous 

study on FAD using the dynamic distance constraint method with the same density 

functional.43  
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The structural dynamic changes of the system across the reaction coordinate 

are also in very good agreement with previous observations.14,43 For example, even 

before performing the free-energy weighting protocol (equation 6), it is clearly 

apparent that DPT only occurs when the two monomeric units are contracted (giving a 

low ρ2 value of 4.8 Å) and that the system becomes considerably more planar on 

approaching the transition state. The transition state itself is well-defined at 

{ρ1,ρ2}={0.0,4.8} Å and has a very similar structure to the transition state obtained 

from the MEP.   
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Figure II 3 (a) Diagrammatic representation of the “standard aMD” protocol. The true underlying 
potential is shown in black. Using a fixed boost energy, Eb, at 15.0 kcal/mol (dashed blue line) and an 
acceleration parameter, α = 25 kcal/mol, the resulting accelerated (modified) potential is shown in red. 
Both acceleration parameters are kept fixed across the entire configurational space. (b) The adaptive 
aMD protocol: The modified potential (red line) is defined as a function of a specific reaction 
coordinate (φ) and positioned above the true underlying potential energy surface (black line) across the 
entire reaction space of interest {0 < φ < 4.1}. Keeping the α parameter fixed at 25-kcal/mol, the boost 
energy (dashed green line) is adapted in a history-dependent fashion to achieve the desired acceleration 
potential across the reaction coordinate. When φ > 4.1, the acceleration is switched off and the system 
evolves on the true underlying potential. (c) Diagrammatic representation of the adaptive aMD protocol 
used to estimate reaction rates. The true underlying potential and the desired modified potential are 
shown in black and red, respectively. In direct comparison to Fig. II.3(b), the desired modified potential 
has been shifted such that it lies below the true underlying potential across the entire transition state 
region. The adaptive boost energy (dashed green line is only applied to the system when the defined 
modified potential lies above the true potential. In this way, the acceleration is switched off whenever 
the system approaches the transition state region and an accurate estimate of the reaction rate can be 
obtained. 
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The adaptive aMD simulations discussed above provide a very accurate 

representation of both the enthalpy and free energy statistics associated with the DPT 

reaction. Using this information, a second adaptive aMD simulation of FAD was 

performed in order to obtain an estimate for the associated DPT reaction rate, as 

described in the Methods section. The desired modified PES was lowered such that it 

intersected the true underlying potential at ρ1 = +/- 0.2Å and a second set of adaptive 

aMD simulations were performed.  In comparison to the previous aMD simulations, 

the DPT event in this adaptive aMD protocol was observed considerably less 

frequently as the system is not being accelerated over the transition state region.  

The estimated rate constant for DPT was found to be approximately 0.077 ns-1 

which is slightly slower than the TST predicted rate constant (kBT/h*exp[βΔG/RT] = 

0.108 ns-1, using the value for ΔG determined in the previous Ad-aMD simulation with 

V* above the true barrier, and assuming a transmission coefficient, κ=1). This suggests 

that the transmission coefficient (which is notoriously difficult to calculate) for the 

DPT reaction is 0.7. We would like to stress that the accuracy of the free energy barrier 

and the associated rate constant is, of course, also dependent on the accuracy of the 

poly-electronic wave-function, i.e. on the quantum chemical electronic structure 

method employed. The biased potential methods employed in this study do not 

improve or correct for any inherent errors in the energy function described by the 

specific density functional.       



	
   	
  

	
  

31	
  

 

 

Figure II 4 (a) Variation of the underlying potential energy of FAD during the standard aMD simulation. 
The labels across the trajectory refer to the different states and motions depicted in Fig. II.1. (b) 
Variation of the potential energy of FAD across the binary proton transfer event. The estimated energy 
barrier to DPT is ∼0.009–0.012 a.u. (5.7–7.5 kcal/mol). 
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Figure II 5 Construction of the desired modified potential: The estimated variation of the potential 
energy of FAD as a function of the reaction coordinate ρ1 obtained from the standard aMD (cf. Fig. 
II.4) is shown by the dashed black line. A series of points (blue squares) describing the desired modified 
potential were defined manually and fit to a simple polynomial function [red line, Eq. (10)]. The desired 
modified potential lies above the true potential across the entire reaction space of interest, –2.8 Å < ρ1 < 
2.8 Å. 

 

Figure II 6 Comparison of the conformational space sampling observed for formic acid dimer by 
standard CP-MD (orange) and adaptive aMD (black). In the (unweighted) adaptive aMD trajectory, the 
system exhibits multiple DPT events across the transition state located at {ρ1, ρ2} = {0.0, 4.8}. 
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Figure II 7 The free energy of formic acid dimer as a function of the reaction coordinate ρ1 obtained 
from the adaptive aMD simulation. 

II.D.3 Cyclic rearrangement of methylene-cyclopropane (MCP) 
	
  

Before presenting the results for MCP, we would like to point out that this 

system was chosen as a purely hypothetical study in order to show that the aMD and 

adaptive aMD approaches can be successfully applied to study transitions across 

extremely large energy barriers. To the best knowledge of the authors, the ring opening 

and subsequent rearrangement reactions of MCP, similar to many other cyclic organic 

systems, proceed via a non-adiabatic mechanism which involves transitions between 

the ground state and both a singlet excited state and a triplet tri-methyl-methane 

(TMM) bi-radical state.44 The simulations presented in this work have been performed 

under strict adiabatic (ground electronic state) conditions.       
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Analogous to the study of FAD described previously, the first step in the 

investigation into the ring-opening and subsequent rearrangement reactions of MCP 

was to perform a standard CP-MD simulation of the system in the gas phase at 300K, 

which afforded an estimate of the average density functional energy of MCP in the 

stable thermodynamic state. A series of standard aMD simulations were then 

performed in which the boost energy, Eb, was fixed 60 kcal/mol above this potential 

energy minimum and the acceleration parameter, α, was systematically decreased in 

steps of 10 kcal/mol from 60 kcal/mol to 10 kcal/mol.  

This approach is slightly different to that performed in the case of FAD, where 

α was held fixed and the level of acceleration was defined by increasing the boost 

energy. As discussed in the Methods section, the level of acceleration is controlled by 

both the boost energy Eb and α. In the case of MCP, it is clear that the ring-opening 

mechanism involves a transition over an exceedingly large energy barrier. In such a 

scenario, it was found that the configurational space sampling could best be controlled 

by fixing (Eb-V0) at a large value and using the parameter α to control the level of 

acceleration. Even at a moderate acceleration level {(Eb-V0), α}={60.0 kcal/mol, 60.0 

kcal/mol}, we observed cleavage of the C3-C4 bond (see Fig. 2(a): MCP STATE A) 

resulting in a partial opening of the cyclopropane ring.  

The C3-C2-C4 angle, θ, was seen to increase from 66o (equivalent to the 

thermodynamically stable geometry) to as much as 90o and the underlying (true) 

potential energy of the system increased by up to 20 kcal/mol. Under more aggressive 

acceleration conditions (lower values of α), the ring-opening mechanism was even 
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more pronounced, however, at such aggressive acceleration levels, we also observed 

some intra-molecular distortions, particularly involving C-H bond cleavage events. In 

order to overcome this problem, a second set of standard aMD simulations were 

performed where the acceleration (and associated force modification) was only 

applied to the heavy C-atom frame of the molecule. The (partial) standard aMD 

simulations identified two chemical reactions:  

The first involved ring-opening and subsequent ring-closure via a trigonal-

planar TMM bi-radical intermediate and the underlying potential energy barrier for 

this chemical reaction was found to be approximately 40 kcal/mol. The second 

chemical reaction involved cleavage of the C2-C3 bond, leading to the formation of an 

exceedingly high energy vinyl-radical system. 

 

Figure II 8 Comparison of the conformational space sampling observed in MCP by standard CP-MD 
(orange) and adaptive aMD (black). In the (unweighted) adaptive aMD trajectory, the system rapidly 
exchanges between all three iso- merit states of MCP located at ∼{θ 1 , θ 2 } = {65, 150}◦ , {150,150}◦ , 
and {150, 65}◦. The TMM metastable intermediate is located at {120, 120}◦. 
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Figure II 9 The free-energy profile for ring opening of MCP as a function of the C–C–C angle, θ 
obtained from the adaptive aMD method (black line), and the standard constrained CP-MD approach 
(red line). The closed ring system has a free-energy minimum at 66◦ and the transition state is located 
approximately at θ = 105◦. 

 

In order to study the lower energy chemical reaction, the ring opening and 

subsequent rearrangement of the MCP system via the bi-radical TMM intermediate in 

more detail, a series of adaptive aMD simulations were performed. Making use of the 

observed planar symmetry of the C-atom frame in the standard aMD simulations, the 

reaction coordinate for the adaptive aMD simulations was defined as the smallest 

angle, θ, subtended between two peripheral atoms over the central C-atom (C2) 

forming the heavy atom frame: In this way, acceleration was constantly applied to the 

system as it evolved between the different isomeric states, each of which, while being 

chemically identical, differs in respect to the specific C-atoms that form the 

cyclopropane ring.  
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The desired modified potential as a function of θ, was therefore defined within 

the boundary conditions (00< θ < 1200). Similar to the case of FAD, an approximate 

representation of the underlying PES, V(θ), was obtained by averaging the potential 

energy statistics from the standard aMD trajectory with respect to θ. The modified 

potential, V*(θ), was then constructed by manually defining an initial set of points. 

The underlying PES obtained from the standard CP-MD and aMD simulations had a 

single energy minimum at θ = 66o. The upper estimate of the activation energy barrier 

for ring opening and subsequent ring-closure, located broadly at θ=120o, was found to 

be approximately 40 kcal/mol above the thermodynamically stable state. For small 

values of θ, particularly, θ < 40o, the system was energetically highly unstable.  

Based on this potential energy function, the transition state for the modified 

potential was positioned at θ=120o and fixed 41 kcal/mol above the true potential 

energy of the thermodynamically stable state, V0 (located at θ=66o), more than 1 

kcal/mol above the true PES at the assumed transition state (θ=120o). The modified 

potential energy minimum was placed at θ=66o, which coincides with the minimum on 

the true underlying PES and was fixed at a value such that the activation energy 

barrier on the modified potential was 0.5 kcal/mol. A third point for the modified 

potential was defined at θ=40o, which intercepted the true underlying PES. Similar to 

the case of FAD, a few interstitial points were manually added and these points were 

fitted to a simple polynomial function. The resulting predefined fixed modified 

potential is given by:     
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V * !( )= 41.522!V0( )+1.21! ! 4.27! 2+3.30! 3 ! 0.7352! 4 ,   (II.11) 

 

where the angle θ is in radians and the polynomial coefficients are given in kcal/mol.  

Two C-C-C angles {θ1, θ2} are sufficient to accurately describe the configurational 

space of the MCP system. Fig. II.8 depicts the enhanced configurational space 

sampling obtained from a 500,000-step (unweighted) adaptive aMD simulation of 

MCP projected onto the two internal degrees of freedom, {θ1, θ2}, compared to a 

500,000-step (~ 50 ps) standard CP-MD simulation.  

While the standard CP-MD simulation samples a very limited region of 

configurational space centered approximately around {θ1, θ2} = {65o, 150o}, the 

adaptive aMD trajectory readily samples all three isomeric states of MCP and the 

inter-conversion between these states proceeds via a meta-stable trigonal planar bi-

radical TMM state located at {θ1, θ2}= {120o, 120o}.  The associated free energy 

profile for ring-opening as a function of θ is depicted in Fig. 9 and shows a transition 

state located at θ=105o. The free energy for ring-opening is found to be approximately 

36 kcal/mol and the meta-stable TMM intermediate state lies approximately 32.5 

kcal/mol above the thermodynamically stable energy minimum located at {θ=66o}.  

In order to assess the accuracy of this result, we calculated the free energy 

profile for the ring-opening of MCP using an established method:15,45,46 A series of 

CP-MD simulations were performed in which the C3-C2-C4 angle that defines the 

propane ring was constrained and the associated free energy profile was obtained by 

thermodynamic integration of the average constraint force over this reaction 



	
   	
  

	
  

39	
  

coordinate (θ), including a correction for the metric effects on the associated 

Lagrangian. The free energy profile obtained from this constrained CP-MD approach 

is shown with the present adaptive aMD result in Fig. II.9. A remarkable agreement 

between the two different free-energy methods is observed, confirming the fact that ab 

initio adaptive aMD is a robust protocol for determining accurate free energy statistics, 

even in the case when the associated free energy barriers are extremely large. Under 

the strict constraints of this (hypothetical) adiabatic study, the associated reaction path 

for ring-opening and subsequent ring-closure of MCP possesses two transition states.  

This free energy profile can be well understood when one considers that as the 

system approaches trigonal-planar symmetry, the resonance hybridization effect 

(Figure II.2(b)) results in energetic stabilization of the bi-radical TMM intermediate. 

Despite the fact that the functional form of the pre-defined modified potential, V*(θ), 

employed in the adaptive aMD simulations does not resemble the true free energy 

profile for this reaction, it is important to recognize that the free energy weighting 

procedure still provides extremely accurate free energy statistics. This observation 

underlines the fact that it is not necessary to define a modified potential that contains 

all the characteristics of the true underlying energy landscape: Accurate free energy 

statistics are consistently produced via the subsequent free energy weighting protocol. 

As was previously mentioned in the Methods section, the pre-defined modified 

potential only has to mimic the true underlying PES accurately enough to ensure that it 

lies above the true potential across the entire reaction space of interest, thereby 

ensuring that the system is constantly under the influence of the acceleration potential, 

resulting in more efficient configurational space sampling.        
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The adaptive aMD approach does not only provide an accurate estimation of 

the free energy profile associated with the ring-opening and subsequent re-

arrangement of MCP, but also affords a very accurate description of the associated 

reaction mechanism. The transition state identified in the adaptive aMD simulations is 

almost identical to that observed in the constrained CP-MD protocol:  As the 

cylcopropane ring opens, the two C-C bonds that originally formed the cyclopropane 

ring increase in length from 1.5 Å to 1.8 Å, as does the C=C ethylene bond.  Both 

ring-opening and ring-closure events on the (hypothetical) adiabatic PES involve a 

dis-rotatory motion of the two CH2 groups. These structural geometric changes are 

observed in both the adaptive aMD simulations and the constrained CP-MD analysis.  

II.E Discussion 
	
  

The results presented above demonstrate how the application of the accelerated 

molecular dynamics approach in the framework of ab initio molecular dynamics can 

be used to study chemical reactions and to obtain an accurate representation of both 

the free energy surface and the associated reaction mechanism. It is important to note 

that the two bias potential methods (standard aMD and adaptive aMD) serve different 

purposes: The primary purpose of the standard aMD simulations is to explore the 

configuration and reactive free energy surface of the system, to identify stable and 

meta-stable states and to predict chemical reactions of interest. For example, the 

standard aMD simulations performed on FAD readily identified the dissociated state 

(Fig. II.1(b)) and the twisted state (Fig. II.1(d)) and predicted the DPT chemical 

reaction via the transition state (Fig II.1.(c)). In the case of MCP, the standard aMD 
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simulations identified two chemical reactions: Ring-opening and subsequent ring-

closure via a TMM intermediate and cleavage of the C2-C3 bond leading to the 

formation of a high energy vinyl-radical state. For both systems it was possible to 

obtain an approximate representation of the underlying PES. The primary purpose of 

the adaptive aMD method is to obtain accurate free energy statistics for a specific 

chemical reaction of interest and, when appropriate, an estimate of the associated 

reaction rate.  

In general, one faces the following dilemma concerning enhanced 

configurational space sampling and obtaining accurate free energy statistics: Ideally, 

we would like to explore large areas of the PES of a system as efficiently as possible 

and at the same time extract accurate free energy statistics. However, these two aims 

are often mutually exclusive, as the more widely we explore the PES, the less accurate 

the free energy statistics will be in the narrow regions of interest. The different roles of 

the two bias potential methods presented in this paper reflect this mutual exclusivity. 

While the standard aMD approach is much more efficient at exploring the total PES of 

the system, identifying a large number of high energy 'states' or activated processes, 

the associated free energy statistics are not very accurate.  

Having identified a particular chemical reaction of interest, the application of 

the bias potential can then be adapted in order to focus more on the specific associated 

reacting degrees of freedom, enhancing the specific sampling of that particular process 

and thereby affording more accurate free energy statistics. This forms the basis of 

adaptive aMD. We would like to point out that a similar argument can be made for 

other contemporary enhanced configurational space sampling methods. For example, 
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in the constrained CP-MD approach, having defined a reaction coordinate, it is 

possible to obtain an accurate free energy profile with respect to that specific reaction 

coordinate, but only a very small part of the total PES of the system is sampled.  

As discussed above, the primary aim of the standard aMD approach is to 

efficiently explore the PES of a system and to identify activated processes and 

chemical reactions. The efficiency of the enhanced configurational space sampling in 

aMD simulations depends strongly on the choice of the acceleration parameters, Eb (or 

more specifically [Eb-V0]) and α. In practice, the 'optimal' choice of these aMD 

parameters is extremely system-specific and depends on many factors including the 

size of the system and the nature of the underlying potential energy landscape. 

Nevertheless, based on the work presented here, it is possible to construct some 

general guidelines.  

The boost energy, Eb, represents the potential energy ceiling: Any activated 

process that involves a transition over an energy barrier greater than [Eb-V0] will not 

generally be observed in the standard aMD simulations. While initial estimates of the 

energy barriers (and hence the magnitude of [Eb-V0]) can be made using our 

understanding of different classes of chemical reactions, in the case where one has no 

prior knowledge of the underlying PES for a given system, a suitable choice for [Eb-

V0] in general is 10-15 kcal/mol, which, according to TST, will allow the prediction of 

chemical reactions occurring on the micro- to millisecond time-scale. Nevertheless, 

when approaching extremely rare events or reactions mediated by non-adiabatic 

mechanisms (such as that observed in MCP) that involve transitions over exceedingly 
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large energy barriers (usually in excess of 30 kcal/mol), a significantly larger initial 

estimate of [Eb-V0] is required.   

Based on the work presented here, we have identified that the 'optimal' value 

for the acceleration parameter, α, generally lies between 0.7*[Eb-V0] and 0.1*[Eb-V0]. 

Obviously, when approaching a system for which one has no prior understanding of 

the underlying PES, an initial series of test aMD simulations across a variety of 

acceleration levels is necessary in order to identify the 'optimal' acceleration 

parameters. For example, in the case of FAD, we performed six initial short aMD 

simulations using a fixed value of α (0.016 a.u.) and varying the value of [Eb-V0] 

between 0.016 a.u. and 0.026 a.u. in steps of 0.002 a.u. We would like to note that 

even when performing very short initial test aMD simulations (such as 100,000 steps 

which is the equivalent of ~10 ps), the appropriate acceleration level can be readily 

identified: If the acceleration level is too low, ostensibly no enhanced configurational 

space sampling is observed. In contrast, applying too high an acceleration level, results 

in a molecular explosion or dissociation of the system.  

The initial test aMD simulations also provide valuable qualitative information 

about the associated activation energies for different processes occurring in the 

system. It should be recognized that the efficiency of the standard ab initio aMD 

approach to predict chemical reactions is dependent on the size and inherent flexibility 

of the system under study. aMD amplifies the motion of all the vibrational degrees of 

freedom in the system, including low energy, large amplitude molecular motions, and 

not just those degrees of freedom associated with the chemical reaction. In some cases, 

the acceleration of these low energy vibrational fluctuations (such as the inter-
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monomer breathing mode of FAD) brings the system towards the chemical transition 

state, thereby facilitating the observation of the chemical reaction of interest. 

However, whether a particular chemical reaction is sufficiently accelerated by aMD 

also depends on the number of alternative dynamical pathways. Therefore, the 

efficiency of the aMD method to predict chemical reactions may be compromised to 

some extent when applied to larger, more flexible systems than those reported in this 

paper.   

In addition to their ability to predict chemical reactions of interest, the standard 

aMD simulations also provide an approximate representation of the underlying 

variation in the PES for these processes (as demonstrated specifically in the Results 

section for FAD). As such, these simulations allow us to formulate a suitable reaction 

coordinate for the specific reaction of interest, which is then used in the adaptive aMD 

simulations to obtain accurate free energy statistics. The initial definition of the 

magnitude and functional form of the boost energy (for a fixed value of α) employed 

in the adaptive aMD simulations can be obtained using the approximate representation 

of the underlying PES. It is therefore clear that defining the initial acceleration 

parameters in the adaptive aMD approach is much simpler than in the case of standard 

aMD, where no information about the PES is available.  

The adaptive aMD method presented here was developed to show that it is 

possible to obtain accurate free energy statistics and reaction rates for chemical 

reactions in the general framework of ab initio aMD. However, it is clear that having 

predicted a chemical reaction and formulated a suitable reaction coordinate from the 

standard aMD simulations, alternative methods to obtain the associated free-energy 
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profile, such as meta-dynamics or constrained MD can be employed and in some cases 

may be more favorable. An objective comparison of the efficiency and accuracy of 

enhanced configurational space sampling and free energy methods is difficult to 

perform as certain methods are more suited to some systems than to others. In terms of 

exploring the PES and predicting activated processes and chemical reactions, the 

standard aMD approach has significant advantages over other methods (such as meta-

dynamics and constrained CP-MD) as it does not require any a priori understanding of 

the underlying PES, nor does it require the specific prior definition of a reaction 

coordinate or a set of collective variables. As such, we consider that the standard aMD 

approach could be particularly useful when studying larger, more complex systems 

where the specific construction of an appropriate reaction coordinate or a suitable 

definition of the appropriate collective variables might not be readily apparent.  

In terms of obtaining accurate free energy statistics, the relative efficiency of 

the different methods is not so clear: A direct comparative analysis of the adaptive 

aMD and constrained MD approaches applied to the systems presented in this work 

suggests that the two methods are equally efficient. We would like to stress that this 

observation is based on just two systems and as such, it is inappropriate to draw 

general conclusions about the relative efficiency of methods. In particular, we note 

once again that the test systems studied here are small and possess a limited number of 

internal degrees of freedom. The relative efficiency of the two methods when applied 

to larger and inherently more flexible systems remains unclear. Nevertheless, the Ad-

aMD approach does not require a correction for metric effects on the associated 

Lagrangian, which is often necessary and tedious in the constrained CP-MD method. 
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Furthermore, the Ad-aMD approach affords an estimate of the reaction rate constant, 

including a meaningful estimate of the associated transmission coefficient, which is 

notoriously difficult to obtain using any standard method for enhanced configuration 

space sampling. In general therefore, we consider that the ab initio aMD methods 

presented here can be readily used alone, or to complement existing methods to study 

chemical reactions and reactive free energy surfaces.   

II.F Conclusions 
	
  

We have demonstrated that the accelerated molecular dynamics approach, 

which has previously been successfully applied to the study of conformational 

transitions in poly-peptides and proteins, can also be implemented in the framework of 

ab initio molecular dynamics to study chemical reactions. A two-step procedure is 

proposed: in step 1, the standard aMD approach is applied, which allows one to 

efficiently explore the reactive subspace of molecular systems, identifying a variety of 

of high energy states and predicting potential chemical reactions.  In step2, a new 

variant, adaptive aMD, is introduced, which allows one to focus on a particular 

chemical reaction or rare event of interest, providing a detailed description of the 

reaction mechanism, an accurate representation of the associated free energy statistics 

and an approximate estimate of the associated reaction kinetics.  

In comparison to other methods, ab initio aMD allows for the exploration of 

the reaction space of a molecular system without any a priori understanding of the 

underlying free energy surface, nor does it involve the specific definition of a pre-

defined reaction coordinate. The biased potential ab initio MD simulations presented 
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here have been performed in the framework of Car-Parrinello MD, but the application 

of this method in the framework of Born-Oppenheimer MD is equally viable. Our 

present study of chemical reactions in simple systems, the DPT event in FAD and the 

ring-opening and subsequent rearrangement of MCP have demonstrated that both ab 

initio aMD and adaptive ab initio aMD methods are readily applicable to the study of 

chemical reactions involving transitions over intermediate to large free energy barriers 

up to 25-kcal/mol. The study of chemical reactions involving transitions over 

substantially larger energy barriers is possible (as demonstrated by the example of 

MCP in this work) but is somewhat more challenging. However, we would like to 

point out that such high energy processes are usually mediated by more complex non-

adiabatic processes that require more elaborate methods.47,48  

Most chemical reactions of interest, particularly bio-chemical reactions, 

generally occur on micro- to millisecond time-scales and have associated free energy 

barriers ranging up to a magnitude of 15-kcal/mol.  We believe that standard ab initio 

aMD is a powerful and general tool for searching for any reactive pathways in an 

unbiased fashion.  It can be readily applied to highly complex systems, retaining its 

predictive power.  In fact, we are presently implementing these ab initio aMD methods 

in a QM/MM manifold in order to study enzymatic reactions in a realistic bio-

molecular environment.  Accurate free energy landscapes are readily obtained using 

the new, adaptive aMD method, i.e. by selectively accelerating the reactive modes 

identified in the standard aMD simulation.  Generalization of Ad-aMD to many-

dimensional reaction coordinates in more complex systems is straightforward once 

they have been identified. In conclusion, we consider that the ab initio aMD methods 
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presented here can be readily used alone, or to complement existing methods to study 

chemical reactions and reactive free energy surfaces. 
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III Adaptive accelerated Molecular Dynamics 

III.A Abstract 

  
An extended accelerated molecular dynamics (aMD) methodology called 

adaptive aMD is presented. Adaptive aMD (Ad-aMD) is an efficient and robust 

conformational space-sampling algorithm that is particularly well suited to proteins 

with highly structured potential energy surfaces exhibiting complex, large-scale 

collective conformational transitions. Ad-aMD simulations of substrate- free P450cam 

reveal that this system exists in equilibrium between fully and partially open 

conformational states. The mechanism for substrate binding depends on the size of the 

ligand. Larger ligands enter the P450cam binding pocket, and the resulting substrate-

bound system is trapped in an open conformation via a population shift mechanism. 

Small ligands, which fully enter the binding pocket, cause an induced-fit mechanism, 

resulting in the formation of an energetically stable closed conformational state. These 

results are corroborated by recent experimental studies and potentially provide 

detailed insight into the functional dynamics and conformational behavior of the entire 

cytochrome-P450 super- family. 

III.B Introduction 
 

The function of bio-macromolecules is determined by both their 3D structure 

and dynamics.1,2 Proteins are inherently flexible systems displaying a broad range of 
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dynamics over a hierarchy of time scales. Many biologically important processes, such 

as enzyme catalysis,3 ligand binding, and signal transduction,4 occur on the 

microsecond- millisecond time scale.5 The study of such slow time scale dynamics 

remains a challenge to experimentalists and theoreticians alike. Despite the sustained 

and rapid increase in available computational power and the development of efficient 

simulation algorithms, MD simulations of large proteins and biomachines are 

generally limited to time scales of tens to hundreds of nanoseconds. Considerable 

progress has been made in the development of more sophisticated methods to sample 

the conformational space of proteins more efficiently,6,7 allowing the study of 

functionally important slow molecular motions.  

In general, these methods can be divided into two groups. The first involves 

the identification of transition pathways between known initial and final states. Such 

methods include transition path sampling8 and targeted molecular dynamics.9 The 

second group contains those methods that efficiently sample low-energy molecular 

conformations, allowing the rapid identification of thermodynamically dominant 

regions on the potential energy surface (PES). These methods include replica 

exchange MD,10 meta-dynamics,11 and accelerated molecular dynamics (aMD).12 The 

principle behind aMD is to add a continuous non-negative bias potential to the actual 

PES, which raises the low-energy regions on the potential energy landscape, 

decreasing the magnitude of the energy barriers and accelerating the exchange 

between low-energy conformational states while still maintaining the essential details 

of the underlying potential energy landscape. One of the favorable characteristics of 
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this method is that it yields a canonical average of an observable, so that thermo- 

dynamic and other equilibrium properties can be determined. 

aMD has already been successfully employed to study slow time scale 

dynamics in small proteins, such as ubiquitin13 and IκBR.14 The enhanced 

conformational space sampling by aMD in these studies was shown to significantly 

improve the theoretical prediction of experimental NMR observables, such as residual 

dipolar couplings,13,14 scalar J couplings,13,15 and chemical shifts16 that are sensitive to 

dynamic averaging on the micro- to millisecond time scale. As a robust free- energy 

sampling method, aMD has also been successfully combined with molecular modeling 

approaches to study the conformational behavior of natively unstructured proteins.17 

 Despite these initial successes, certain aspects of the aMD methodology, 

including both efficiency and versatility, need to be improved in order to study more 

complex dynamic behavior in large biomolecular systems. In light of this, we have 

developed an extended aMD methodology called adaptive aMD (Ad-aMD). 

III.C Methods 
	
  

The principal idea behind Ad-aMD is to use the information that is obtained 

about the potential energy landscape of the system during an aMD simulation to 

optimize the acceleration parameters in order to sample the conformational space more 

efficiently. By learning from the simulation itself, the acceleration parameters are 

adapted to create an optimal modified “history-dependent” PES. Ad-aMD provides 

efficient and enhanced conformational sampling for systems exhibiting a highly 

structured potential energy landscape. History-dependent adaption of the acceleration 
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level during the course of the simulation allows the system to rapidly traverse 

exceedingly large energy barriers, identifying complex, collective conformational 

transitions while still maintaining the integrity of the underlying PES. In this paper, 

we introduce the Ad-aMD method and apply it to the study of the molecular plasticity 

and functional dynamics of P450cam from Pseudomonas putida. 

P450cam (CYP101) is a member of the cytochrome-P450 superfamily, a large 

and diverse group of heme mono-oxygen ases that activate O2 for oxygen insertion 

into a wide variety of substrates. Previous X-ray crystallographic studies have shown 

that P450cam can be trapped in a range of conforma- tional states. While camphor-

bound P450cam adopts a “closed” conformation,18,19 a variety of “open” conforma- 

tions have been observed in response to binding large tethered adamantane probes.20-22 

Substrate-free P450cam has long been regarded to exist in the closed state following 

the report of a substrate-free structure obtained by soaking dithiothreitol (DTT) out of 

the active site of crystals, affording a conformation very similar to the camphor-bound 

form.23 Small-angle X-ray scattering24 and hydrostatic pressure25,26 experiments have 

also supported the view that substrate-free P450cam exists in a closed conformation. 

However, these studies have recently been brought into question following the 

observation of an open conformation of P450cam in the absence of substrate.27 

The details of accelerated molecular dynamics have been discussed previously 

in the literature,12 and we merely provide a brief summary here. In the standard aMD 

formalism, a continuous non-negative bias potential, ΔV(r), is defined such that when 

the true underlying potential of the system, V(r), lies below a certain threshold boost 

energy, Eb, the simulation is performed on a modified potential, V*(r) = V(r) + ΔV(r), 
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but when V(r) > Eb, the simulation is performed on the true potential [V*(r) = V(r)]. 

The modified potential is related to the true potential, bias potential and boost energy 

by12 

V * r( )=V r( ) , V r( ) ! Eb
                                         (III.1) 

 V * r( )=V r( )+!V(r) , V r( ) < Eb  

and the bias potential, ΔV(r) is defined as: 

!V r( )=
Eb "V r( )( )

2

!+Eb "V r( )
                                                        (III.2) 

 

The application of the bias potential results in raising and flattening of the potential 

energy landscape, thereby enhancing the escape rate between low-energy 

conformational states, and the extent of acceleration is determined by the choice of the 

acceleration parameters Eb and α. In the standard aMD protocol, the parameters Eb 

and α are kept constant. 

A more efficient extension to the accelerated molecular dynamics approach is 

Ad-aMD. In this approach, one of the acceleration parameters (α) is held fixed, and 

the boost potential, Eb, is adapted in a history-dependent fashion during the aMD 

simulation using the population statistics on the modified potential. In order to achieve 

this, it is necessary to project the trajectory onto a suitable predefined conformational 

subspace. In the present application, the P450cam system was projected onto the 

conformational subspace defined by the two lowest principal components obtained 

from a PCA analysis performed on a collection of available X-ray crystal structures of 
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P450cam cocrystallized with different substrates. The adaptive boost potential, 

Eb(p,q), is then given by 

 

Eb(p,q)= Eb(0)+ a!exp
i
" #

(p# $pi#1%)
2

2c2
+
(q# $qi#1%)

2

2c2
&

'
(

)

*
+

,            (III.3) 

 

where p and q are the projected principal components and the index, i, refers to the 

number of adaptive Gaussians added to the boost potential during the simulation. The 

simulation is initiated as a standard aMD simulation with a boost energy of Eb(p,q) = 

Eb(0) (the base-boost potential). After 500,000 MD steps (the equivalent of 500 ps), 

the trajectory is projected into the principal component space (p,q), and the average 

PC- projection coordinates (〈pi-1〉,〈qi-1〉) are calculated.  

An adaptive 2D-Gaussian boost potential centered at these coordinates is then 

added to the boost potential, Eb(p,q), and the simulation is performed for another 

500,000 MD steps. The resulting 500,000 structures are projected into the principal 

component space, and the average PC-projection coordinates are used to define the 

center of the next adaptive 2D-Gaussian boost potential. In this way, the boost 

potential is adapted every 500,000 MD steps in a history-dependent fashion. The 

parameters a and c define the magnitude and width of the adaptive Gaussian boost 

potentials, respectively. In the present work, “dual boost” Ad-aMD simulations were 

performed, in which two adaptive acceleration potentials were applied to the P450cam 

system. The first acceleration potential was applied to the torsional potential only, and 

a second, weaker acceleration was applied across the entire potential. A schematic 
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representation of the Ad-aMD method is shown in Fig. III.1. 

 

Figure III 1 Schematic representation of the adaptive aMD method.  The rugged and highly structured 
true PES of the protein as a function of the configurational space coordinate, p, is shown in black. The 
base- boost potential, Eb(0) is fixed at 15 kcal/mol above the potential energy minimum (blue line). The 
history-dependent adaptive Gaussian boost potentials are shown in green. The final adaptive boost 
potential, Eb(p), is shown in orange, and the resulting modified potential energy surface on which the 
system evolves during the Ad-AMD simulation is represented by the red line using the fixed 
acceleration parameter α=12 kcal/mol. 

 
All MD, aMD, and Ad-aMD simulations presented in this work were 

performed on a 404 residue construct of substrate-free P450cam using an in-house 

modified version of the AMBER10 sander simulation suite.28 The ff99SB force field29 

was employed for the solute residues (Leu11-Val414), with the exception of a 

nonstandard Cys357-heme residue for which a force field was generated in-house, and 

the TIP4P water force field was used for the solvent molecules. A comparative 
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analysis of previous dual-boost aMD simulation studies13,14,30  identified that for 

torsional acceleration, the optimal value of [Eb(dih) - V0(dih)] (where V0(dih) is the 

average torsional potential energy obtained from a standard MD simulation) is 

approximately equal to 3-5 kcal/mol times the number of solute residues, and the 

associated acceleration parameter, R(dih), is equal to 1/5 of this value. For the 

background total acceleration, [Eb(tot)-V0(tot)] and R(tot) should both be equal to 

0.16 kcal/mol times the number of atoms in the simulation cell (NASC).31 In light of 

this, the acceleration parameters employed for all standard aMD simulations in this 

work are {[Eb(dih)-V0(dih)], α(dih); [Eb(tot)-V0(tot)], α(tot)}={1400, 280; 

0.16NASC, 0.16NASC} kcal/mol. The acceleration param eters used for all of the Ad-

aMD simulations in this work are {[Eb(dih)(0) - V0(dih)], α(dih); [Eb(tot)(0) - 

V0(tot)], α(tot)}= {700, 280; 0.08NASC, 0.16NASC} kcal/mol. Notice that for both 

torsional and total acceleration terms, the respective α values are held constant and are 

the same as those used for the standard aMD simulations. However, in each case, the 

base-boost potential, Eb(0) has been substantially lowered.  

The strength of the adaptive Gaussian bias potentials, a, was set to 10.0 

kcal/mol for the torsional acceleration and 0.01- [Eb(tot)(0) - V(tot)] for the total 

background acceleration. The width of the adaptive Gaussian potentials, c=1.80 Å, 

was defined such that the full width of the adaptive Gaussian bias potential in the 

{PC1, PC2} projection space encompassed the entire PC-projection space sampled by 

a standard 5 ns MD simulation of substrate-free P450cam. The reader is referred to the 

SI for a discussion of the specific choice of Ad-aMD parameters used, as well as for 

full simulation details. 
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The five X-ray crystal structures of P450cam (PDB Ids: 5CP4, 1RE9, 1RF9, 

3P6T, 3P6X) projected onto their own principal components {PC1, PC2} are depicted 

in Figure 1. The closed P450cam-camphor conformation is located at {-25.82, -6.87}, 

and the most open conformation (P450cam-- AdaC3-C8-Dans) is located at {21.01, -

5.77}. For each of these X-ray crystal structures, the substrate was removed, and a 

standard 5 ns classical MD (CMD) simulation was performed. In all five CMD 

simulations, the system was found to be stable, affording backbone RMSDs to the 

respective X-ray crystal structure of 1.0-1.2 Å. The results of these initial simulations 

suggest that P450cam is stable in both closed and open conformations in the absence 

of the respective substrate. The conformational space sampling of a standard 25 ns 

CMD simulation for the closed conformation projected onto the principal component 

space is shown in Figure III.2 (black circles). 
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Figure III 2 The conformational dynamics of substrate-free P450cam projected into the principal 
component space {PC1,PC2} obtained from a PCA analysis of five X-ray crystal structures (green 
squares). The black circles represent the conformational space sampling afforded by a standard 25 ns 
classical MD simulation. The blue circles represent the conformational space sampling afforded by a 
standard 25,000,000 step AMD simulation. The red circles represent the conformational space sampling 
obtained from a 25,000,000 step Ad-AMD simulation. All simulations were initiated in the closed 
conformation located at {PC1, PC2} = {-25.82,-6.87}. 

III.D Results 
 

A 25,000,000 step standard aMD simulation initiated in the closed 

conformation was performed, and the (unweighted) conformational space sampling is 

depicted in blue (Figure III.2). The aMD trajectory clearly samples more 

conformational space than the standard CMD simulation, identifying a large number 

of substates as the system oscillates back and forth about the native closed 

conformation. However, even under these acceleration conditions, the system never 

exits the closed state. In comparison, a 25,000,000 step Ad-aMD simulation initiated 
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in the closed state (shown in red in Figure III.2) reveals the true molecular plasticity of 

substrate-free P450cam. In the first half of the Ad-aMD simulation, the system resides 

broadly in the closed conformation, and a considerable amount of adaptive bias is 

applied before the system exits the closed state and then rapidly samples a large 

number of open conformational states. The conformational space sampling observed 

in the Ad-aMD simulation not only encompasses all five X-ray crystal structures but 

also identifies new extended open conformations. An ensemble of structures collected 

over the Ad-aMD simulation is shown in Figure III.3. 

  

 

Figure III 3 Ensemble of structures for substrate free P450cam extracted from the Ad-aMD Simulation 
superposed by performing a backbone RMSD fit to residues 295-405 (gray). The Ad-aMD simulation 
reveals a complex collective motion of substrate-free P450cam involving predominantly the F and G 
helices and the FG loop (red), as well as the H and I helices and the H-I loop (orange) and the B and C 
helices and the B-C loop (yellow). The remainder of the protein is shown in cyan. 
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Figure III 4 C-α atom root-mean-square fluctuation (RMSF) obtained from the standard 25 ns MD 
simulation (black), the 25,000,000 step AMD simulation (blue), and the 25,000,000 step Ad-AMD 
simulation (red) of substrate-free P450cam initiated in the closed state. In each case, the structures 
collected across the ensemble were first superposed by performing a backbone RMSD fit to residues 
295-405. A significant increase in the RMSFs from the Ad-AMD simulation is observed in the B and C 
helices and the B-C loop (residues 89-120) and the F, G, H, and I helices and the F-G and H-I loops 
(residues 171-267). 

The Ad-aMD simulation reveals a complex collective motion of substrate-free 

P450cam involving predominantly the F and G helices and the F-G loop, as well as the 

H, I, B, and C helices and the B-C loop, which is seen to be considerably more flexible 

in the open conformational states. As such, over one-third of the residues in the 

protein are specifically involved in the functional dynamics of the system, a result, 

which is quantitatively represented in Figure III.4. 

As a robust conformational space sampling protocol, the Ad-aMD approach is 

obviously much more efficient than standard aMD. Interestingly, the magnitude of the 

bias potential applied to the system in the Ad-aMD method is considerably lower than 
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that applied during the standard aMD simulation. The enhanced efficiency of Ad-aMD 

arises from the fact that, rather than raising and flattening the entire PES, the adaptive 

bias potential is selectively applied only to the lowest-energy regions on the 

underlying PES. As the perturbation applied to the system is, on average, much 

smaller, the resulting trajectory affords a much higher level of structural integrity. 

During the Ad-aMD simulation, the system was seen to come to within 1.3 Å of the 

backbone RMSD for all five X-ray crystal structures, a remarkable result considering 

that the backbone RMSD afforded by the CMD simulations initiated in these different 

conformations was found to be 1.0-1.2 Å. 

A qualitative representation of the free-energy surface can be readily obtained 

from the Ad-aMD simulation by analyzing the magnitude of the adaptive boost energy 

across the conformational space, as shown in Figure III.5. 
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Figure III 5 Variation in the adaptive boost potential, Eb(p,q) in the projected principal component space 
{PC1,PC2}obtained from the Ad- AMD simulation initiated in the closed state. The lowest boost 
potential (the base-boost potential) is shown in blue, and the largest boost potential, affording the most 
aggressive acceleration, is shown in red. The black circles represent the conformational space sampling 
obtained from the 25,000,000 step Ad-AMD simulation. 

Figure III 6 Variation in the adaptive boost potential, Eb(p,q) in the projected principal component space 
{PC1,PC2} obtained from a representative Ad-AMD simulation of substrate-free P450cam initiated in 
the open state (using the X-ray crystal structure coordinates from P450cam-AdaC3-C8-Dans). The 
lowest boost potential (the base-boost potential) is shown in blue, and the largest boost potential, 
affording the most aggressive acceleration, is shown in red. The black circles represent the 
conformational space sampling obtained from the 25,000,000 step adaptive AMD simulation. The 
adaption of the modified potential was terminated after 15,000,000 steps (see text). Notably, in 
comparison to the conformational space sampling obtained from the Ad-AMD simulation initiated in 
the closed state (Figures III.2 and III.5), the closed conformation is never visited during the simulation. 
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III.E Conclusions 
	
  

Obviously the lowest free-energy conformations are associated with those 

regions where it was necessary to apply the largest adaptive boost potential. We 

clearly observe three local free-energy minima. The lowest energy state appears to be 

the closed conformation, broadly located at {PC1,PC2}= {-28.0,-5.0}. In addition, we 

observe two other local free- energy minima associated with a fully open {18.0,-18.0} 

and partially open {-14.0,4.0} conformational state. However, the free-energy 

statistics alone do not provide the complete story. We noticed during the Ad-aMD 

simulation that once the system had exited the closed state, it rapidly moved between 

the fully and partially open states but never returned to the closed conformation. This 

was a surprising result as we expected to see the system freely exchange between the 

closed and open states on the adaptive modified potential.  

We subsequently performed four more 25 000 000 step Ad-aMD simulations, 

this time initiating the simulations in the open conformational states using the atomic 

coordinates from the available X-ray crystal structures. In all four of these Ad-aMD 

simulations, within 15 000 000 steps, the system sampled the entire open 

configurational space and exchanged so rapidly between the (already sampled) fully 

and partially open states that the addition of further adaptive Gaussian boost potentials 

was no longer appropriate. For the remainder of the simulation, the adaption was 

therefore switched off. The Ad-aMD simulations readily identified the two local free-

energy minima associated with the fully open and partially open conformational states 

but never visited the closed conformation, as shown in Figure III.6. 

It should be noted that, unlike several other enhanced conformational space 
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sampling methods in which the system is driven along a predefined reaction 

coordinate, whether the system would naturally follow that reaction coordinate or not, 

Ad-aMD will not force a system to undergo an unnatural transition to a kinetically 

inaccessible state.  The results of all of the Ad-aMD simulations strongly suggest that 

while the closed conformation is energetically stable, it is kinetically inaccessible to 

substrate-free P450cam. Therefore, we propose that substrate-free P450cam exists in 

equilibrium between a fully open and partially open state, located at {PC1,PC2} = 

{18.0,-18.0} and {-14.0,4.0}, respectively (Figure III.6). The lowest-energy, and 

hence most populated, conformation is the fully open state. As such, P450cam can 

accommodate a variety of substrates of differing size. Larger ligands can enter the 

binding pocket when P450cam exists in the fully open state and the resulting 

substrate- bound system is trapped in an open conformation via a population shift 

mechanism. However, when a small ligand, such as camphor or DTT, fully enters the 

binding pocket, it triggers an induced-fit mechanism, resulting in the protein “zipping 

up” around the bound substrate, leading to the formation of an energetically stable 

closed conformational state. These results are corroborated by recent experimental 

studies27 and potentially provide detailed insight into the functional dynamics and 

conformational behavior of the entire cytochrome-P450 superfamily. Indeed, several 

other members of the P450 superfamily, most notably P450 EryK32 and PikC,33 have 

also been shown to coexist in open and closed states in the absence of substrate. 

In conclusion, we have presented a novel variant of the accelerated molecular 

dynamics method called adaptive aMD. Ad-aMD is an extremely efficient and robust 

conformational space sampling algorithm which also affords a qualitatively accurate 
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description of the free-energy surface. A series of Ad-aMD simulations performed on 

substrate-free P450cam revealed that this system exists in equilibrium between a fully 

open and partially open conformational state. The mechanism for substrate binding to 

P450cam depends on the size of the ligand. Larger ligands enter the P450cam binding 

pocket, and the resulting substrate-bound system is trapped in an open conformation 

via a population shift mechanism. Small ligands, such as camphor or DTT, which fully 

enter the binding pocket, cause an induced-fit mechanism, resulting in the formation 

of an energetically stable closed conformational state. 

III.F Supporting Information 

III.F.1 Computational Details 
	
  

All classical MD (CMD), accelerated molecular dynamics (aMD) and adaptive 

accelerated molecular dynamics (Ad-aMD) simulations were performed on a construct 

of substrate-free P450cam comprising residues LEU(11) to VAL(414) [using the same 

residue numbering employed in the X-ray crystal structure PDB IDs: 5CP4, 1RE9, 

1RF9, 3P6T and 3P6X]. In some X-ray crystal structures, particularly those associated 

with the more 'open' conformational states, some atomic coordinates were 

undetermined: For example, residues 90-94 and 104-106 in the P450cam-AdaC3-C8-

Dans system. These residues were modeled using the structural information from the 

(complete) closed conformation (PDB ID 5CP4). All simulations were performed on 

substrate-free P450cam, so the associated substrate was removed. The AMBER 

ff99SB force-field was employed for all solute residues with the exception of residue 
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CYS(357) [once again using the same residue numbering associated with the X-ray 

crystal structure PDB IDs) which is chemically bound to the heme group. A force-

field was generated in-house for this non-standard CYS-heme residue following the 

protocol described by A. Oda et al. [J. Comput. Chem. 2005, 26(8), 818-826]. 

Each substrate-free P450cam system was placed at the center of a cubic box 

containing pre- equilibrated solvent water molecules which, were treated using the 

TIP4P force-field. The dimensions of the solvent box were defined such that the 

distance between the surface of the protein and the edge of the box was at least 12.0 

Angstroms and Na+ counter-ions were added to enforce neutrality of the simulation 

cell. After performing standard energy minimization and equilibration procedures, a 5-

ns CMD simulation was performed on each conformation of substrate-free P450cam at 

300K under ambient pressure conditions. These simulations were performed under 

periodic boundary conditions using a time-step of 1.0-fs. The temperature of the 

system was controlled using a Langevin thermostat and a Berendsen weak-coupling 

pressure-stat was employed. Electrostatic interactions were treated using the Particle 

Mesh Ewald (PME) method with a direct space sum cutoff of 10.0 Angstrom. As 

discussed in the paper, these initial 5-ns CMD simulations confirmed that the different 

conformational states (both open and closed) of substrate-free P450cam were stable in 

the absence of the respective substrate. The simulations also afforded an estimate of 

the average dihedral angle energy, V(dih), and total potential energy, V(tot), for each 

system, which were used to define the specific acceleration parameters in the aMD 

and Ad-aMD simulations. All aMD and Ad-aMD simulations were performed under 

exactly the same physical conditions as described above for the standard CMD 
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simulations. All simulations were performed using an in-house modified version of the 

AMBER10 sander simulation module. 

III.F.2 Principal Component Analysis (PCA) 
	
  

Atomic coordinates for the available P450cam X-ray crystal structures (PDB 

IDs: 5CP4, 1RE9, 1RF9, 3P6T and 3P6X) were used to perform a principal 

component analysis (PCA). Iterated rounds of structural superposition were used to 

identify the most structurally invariant region, which was identified to consist of 

residues 295 to 405 [using the X-ray crystal structure PDB residue numbering]. The 

five X-ray crystal structures were then superposed using backbone (N,Cα,C') root-

mean-square fitting to this structurally invariant 'core' and a PCA was performed using 

the coordinates of the backbone C-α atoms for residues (15-89, 95-103, 107-405). The 

PCA was therefore performed on the whole P450cam construct excluding the flexible 

N- and C-terminal tails and residues 90-94 and 104- 106, whose atomic coordinates 

were absent in some of the X-ray crystal structures and subsequently modeled (see 

above). The two lowest principal component eigenvectors {PC1, PC2} which 

accounted for 80% of the structural covariance were then used to generate the two-

dimensional PC-projection plots (Figures III.3 and III.5 in the manuscript). The 

{PC1,PC2} projection plot allows us to compare the efficiency of 'essential' 

conformational space sampling obtained from the CMD, standard aMD and Ad-aMD 

simulations. The {PC1,PC2} conformational sub-space was also used as the 

framework for the adaptive aMD simulations (see manuscript). 
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III.F.3 Acceleration Parameters: Standard aMD 
	
  

The acceleration level (ie. how much the potential energy surface is raised and 

flattened) in an aMD simulation is determined by the acceleration parameters Eb and α. 

In the standard aMD protocol, these two acceleration parameters are constant. 

Generally speaking, more aggressive acceleration can be achieved by either increasing 

the magnitude of Eb or decreasing the magnitude of the acceleration parameter, α. 

However, if the boost energy, Eb, is too large and the acceleration parameter, α, is too 

small, the modified potential energy surface becomes iso-energetic, resulting in a 

random walk through phase-space, causing the system to spend a large proportion of 

time sampling energetically unfavorable conformational space (and can eventually 

result in unfolding). The 'optimal' acceleration parameters [those that efficiently 

enhance conformational space sampling without generating instabilities in the 

trajectory and a random walk] are extremely system-specific and depend on numerous 

factors including the size of the system and the nature of the underlying potential 

energy surface. Previous aMD studies on proto-typical systems (most notably a recent 

very detailed study on ubiquitin [J. Am. Chem. Soc. 2009, 131(46), 16968-75]) have 

identified that for torsional acceleration, the optimal value of [Eb(dih)-V(dih)] in 

kcal/mol (where V(dih) is the average torsional potential energy obtained from a 

standard MD simulation) is approximately equal to 3 to 5 times the number of (solute) 

residues in the system and the associated acceleration parameter, α(dih), should be set 

to one fifth of this value. For the background, total acceleration, [Eb(tot)-V(tot)] and 

α(tot) should both be equal to 0.16 kcal/mol times the number of atoms in the 

simulation cell (NASC) [J. Chem. Phys. 2007, 127, article no. 155102]. Noticeably, in 
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this 'dual boost' aMD protocol, the total background acceleration is much weaker than 

the torsional acceleration in order to prevent a breakdown in the local structuring of 

the solvent water molecules around the solute. In light of this discussion, the aMD 

simulations presented in this manuscript were performed using the acceleration 

parameters: 

Torsional aMD 

[Edih −V(dih)]=1400 kcal /mol b 

αdih =280 kcal /mol 

Total aMD 

[E tot − V(tot)] = 0.16 ∗ (NASC )kcal / mol b 

α tot = 0.16 * (NASC )kcal / mol 

Notice that the particular construct of substrate-free P450cam in this study has 404 

residues, so [Eb(tot)-V(tot)] is approximately equal to 3.5*(No. solute residues). In a 

series of initial test aMD simulations, we found that using a more aggressive 

acceleration level resulted in unstable trajectories and partial unfolding for the 'open' 

states. 

III.F.4 Acceleration Parameters: Adaptive aMD 
	
  
	
  

Similar to the standard aMD protocol, we would like to point out that the 

choice of acceleration parameters for the adaptive aMD method is also highly system-

specific. It should also be recognized that the specific choice of these parameters will 

determine the balance between how efficiently one samples the conformational space 

and the integrity of the resulting trajectory, including the effective resolution of the 
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qualitative free energy surface. For example, let us consider the base-boost potential, 

Eb(0): If Eb(0) is set to a low value (for example [Eb(0) -V] ~ 0.0 kcal/mol, which is 

the equivalent of performing a standard CMD simulation), the extent of 

conformational space sampling between the adaptive steps in the Ad-aMD protocol 

will be small and a very long Ad-aMD trajectory would be required for exhaustive 

conformational space sampling. The integrity of the resulting trajectory and the 

effective resolution of the qualitative free energy surface would however be very 

good: The system will basically get stuck in every conformational sub-state and 

micro-state, which will then be represented in the qualitative free energy surface as the 

adaptive Gaussian bias potentials are applied in a history- dependent fashion. On the 

other hand, if Eb(0) is set to a very high value, the efficiency of the conformational 

space sampling between adaptive steps will be very fast and, particularly in those 

regions of the PES that are not highly structured, the system will rapidly evolve from 

one conformational sub-state to another, but the integrity of the resulting trajectory 

and the resolution of the effective qualitative free energy surface will be much 

reduced. A similar argument can be made for the height (a) and width (c) of the 

adaptive Gaussian bias-potentials: The application of strong, broad adaptive Gaussian 

bias-potentials during the Ad-aMD simulation will significantly enhance the efficiency 

of conformational space sampling, but the integrity of the resulting Ad-aMD trajectory 

and the resolution of the qualitative free energy surface will be significantly reduced. 

In the present substrate-free P450cam 'dual boost' Ad-aMD simulations, the following 

Ad-aMD parameters were employed: 

Torsional Ad-aMD 
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[Edih (0)−V(dih)]=700 kcal /mol b 

αdih =280 kcal/mol a=10.0 kcal/mol c = 1.80 Angstroms 

Total Ad-aMD 

[Etot (0)−V(tot)]=0.08*(NASC) kcal/mol 

b αtot =0.16*(NASC)kcal/mol 

a = 0.01*[Etot (0)−V(tot)] b 

c = 1.80 Angstroms 

Notice that for both torsional and total acceleration terms, the respective α values are 

held constant and are the same as those used for the standard aMD simulations (see 

above). However, in each case, the base-boost potential, Eb(0) has been substantially 

lowered such that [Eb(0)-V] is equal to half the value used in the standard aMD 

simulations, [Eb-V]. In a series of initial Ad-aMD simulations, we found that a 

substantial increase in the conformational space sampling could be achieved if the 

strength of the adaptive Gaussian bias-potentials (a) was set to be between 1% and 5% 

of [Eb(0)-V]. The width of the adaptive Gaussian potentials, (c), was defined such that 

the full width of the adaptive Gaussian bias- potential in the {PC1,PC2} projection 

space encompassed the entire PC-projection space sampled by the standard 5-ns CMD 

simulation of substrate-free P450cam. For the sake of simplicity, the magnitude of the 

adaptive Gaussian bias-potentials (i.e. the height parameter (a) and width parameter 

(c)) were kept constant during the Ad-aMD simulations. 

III.F.5 The relative efficiency of aMD and Ad-aMD 
	
  

As we discuss in the manuscript, the Ad-aMD method is particularly well 

suited to proteins with highly structured potential energy surfaces. This statement 
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refers to the relative efficiency of the standard aMD and Ad-aMD approaches: If we 

look at the successful applications of the standard aMD approach, we find that the 

systems studied fall into two general categories. The first category consists of 

relatively small, usually globular, proteins such as GB3 or ubiquitin, with a single, 

well defined native fold. The second group consists of highly flexible systems, such as 

poly-peptides or natively unstructured protein (NUP) constructs. If we consider the 

potential energy surface (PES) for these systems, we can understand why the standard 

aMD approach has proven to be so successful for these types of systems. In the case of 

small globular proteins, the PES has a well-defined single minimum. Following 

Frauenfelder's seminal work on protein dynamics, the system undergoes rare 

excursions away from the native fold, exploring high energy regions of the 

configurational space, possibly visiting some meta-stable states (conformational sub-

states and micro-states associated with the native fold), before returning to the energy 

minimum. The application of the bias potential using the standard aMD approach 

enhances the frequency of these excursions, thereby affording efficient configurational 

space sampling. In the case of poly-peptides or NUPs, the PES looks more like an egg- 

box: These systems possess a large number of local energy minima separated by 

relatively small energy barriers.  

Once again, the application of the bias potential in the standard aMD protocol 

raises and flattens the underlying PES, lowering the magnitude of these small energy 

barriers and enhancing the exchange rate between the numerous local potential energy 

minima. Many biological systems (including P450cam) possess a very different type 

of PES. These are systems that can exist in several distinct conformational states. Each 
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conformational state can be considered to be a low potential energy well on the PES 

and each possesses a hierarchy of associated sub-states and micro-states. This is 

exactly what we mean when we refer to a 'highly structured PES' and we depict this 

diagrammatically in schematic 1 in the manuscript. For these types of systems, the 

standard aMD approach is not particularly efficient: By raising and flattening the 

entire PES, the system, starting in a well-defined conformational state, starts to 

explore the associated sub-states and micro-states within the broad potential energy 

well that defines the conformational state. However, even on the modified 

(accelerated) potential, the energy statistics dictate that as the system moves away 

from the low energy conformational state (i.e. as it starts to climb the rugged potential 

energy well), the probability of the system returning to the conformational state from 

which it came is always greater than the probability that it will exit the broad potential 

energy well and search out a different conformational state. As a result, one generally 

sees that the system oscillates back and forth within the potential energy well, but does 

not leave the conformational state.  

Simply increasing the acceleration level (i.e. raising and flattening the 

modified PES even further) might increase the probability that the system will exit the 

conformational state, but this will also render large regions of the PES iso-energetic, 

resulting in a 'random walk' through configurational space, which is certainly not 

conducive to efficient conformational space sampling. In the Ad-aMD approach, we 

define a conformational sub-space using one or more collective coordinates, which 

allow us to differentiate one conformational state from another. Within the framework 

of this conformational sub-space, we can then selectively apply a history-dependent 
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adaptive boost potential which specifically destabilizes the low potential energy wells 

(i.e. the conformational states) on the PES without rendering large regions of the PES 

iso-energetic, allowing the system to efficiently exchange between different 

conformational states. 

One could perform Ad-aMD on any system, but we believe that the enhanced 

efficiency of the Ad-aMD approach compared to the standard aMD protocol will be 

most significant for those systems that possess a highly structured PES for the reasons 

that we have outlined above. Along the same lines, we would like to point out that, 

given a long enough trajectory, the standard aMD approach will sample the same 

conformational space as the Ad-aMD method. 
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IV Accessing Millisecond Time scales 

IV.A Abstract 
 

In this work we combine the enhanced sampling method, accelerated 

molecular dynamics (aMD) with the inherent power (as implemented in Amber) of 

graphics processor units (GPUs) and apply the implementation to Bovine Pancreatic 

Trypsin Inhibitor (BPTI).  A 500ns aMD simulation is compared to a previous 

millisecond unbiased brute force MD simulation carried out on BPTI showing the 

same conformational space is sampled by both approaches. We observe the correct 

relative populations defined by the χ1, χ2, and χ3 dihedral angles of the disulfide bond 

C14-C38, furthermore, we obtain improved agreement with observed chemical shift 

differences from prior experimental work.  To our knowledge this represents the first 

implementation of aMD on GPUs and also the longest aMD simulation of a 

biomolecule run to date. Our implementation will be made available to the community 

with the next release of the Amber software suite (v12) enabling researchers routine 

access to ms events sampled from dynamics simulations using off the shelf hardware.   

IV.B Introduction 
	
  

Conventional molecular dynamics allows one to access time scales on the 

order of 10 to 100s of nanoseconds, however, many biological processes of interest 

occur on longer time scales of up to milliseconds or more1-6.  Efforts to explore these 

long time scales have lead to the development of several advanced sampling technique
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such as conformational flooding7,8, hyperdynamics9,10, metadynamics11-13, and the 

adaptive biasing force method13-15.  Inspired by Voter, accelerated molecular dynamics 

(aMD), is an additional enhanced conformational sampling method, that provides 

access to time scales beyond those obtainable with conventional MD (cMD) 9.  Here, 

we emphasize one of the great advantages of aMD which is no prior knowledge of the 

potential energy landscape needs to be known and, consequently, no reaction 

coordinate needs to be defined prior to running the simulation.   

In addition to advances in algorithms to achieve dynamics on longer time 

scales recent efforts by D. E. Shaw Research have focused on building a specialized 

computer, Anton, with the sole purpose of simulating protein dynamics16.  With this 

great engineering advancement simulation time scales have been pushed to range 100s 

of microseconds to 10s of milliseconds using unbiased brute force cMD17,18.  While 

time on an Anton machine has been graciously granted to the scientific community, 

access is still limited and many researchers are stuck waiting in queues on crowded 

super computers or local clusters.  Recently, the advancement of computational 

science on conventional graphic processing units (GPU) has allowed researchers 

efficient and inexpensive access to 10s to 100s of microseconds of simulation time on 

just a single desktop computer18-20. By combining the advanced sampling method of 

aMD and the inherent power of the GPU, we present the synthesis of a tool that allows 

researchers access to inexpensive efficient exploration of long time scale events.  It 

should be noted at the outset, however, that details of the time evolution are not 

readily available with aMD. 
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IV.C Implementation 
	
  

In its original form, the aMD method modifies the potential energy landscape 

by raising energy minima that lie below a defined threshold level, while leaving those 

areas lying above the threshold unmodified.  As a result, barriers separating adjacent 

energy basins are reduced, providing the simulation access to conformational space 

that cannot be easily accessed in a cMD simulation.  Historically, the implementation 

of aMD was first done by Hamelberg et al. within the framework of the sander module 

in the AMBER 7 package and used to study several small peptide and protein 

systems21,22.  More recently, Wang et al. ported the aMD method to NaMD taking 

advantage of the inherent scalability of this MD package23.  Following this approach, 

we have ported aMD to the three main MD engines included in Amber 12: the CPU 

versions sander and pmemd, and the GPU version pmemd.cuda.  The performance 

enhancements for cMD on GPUs obtained with pmemd.cuda alone have been 

remarkable and can be found on the Amber website24 and in the following  

publication25. For this work we have used our implementation of aMD in the 

pmemd.cuda MD engine and will refer to it simply as aMD. 

Bovine Pancreatic Trypsin Inhibitor (BPTI) is a small protein with 58 residues, 

that has been extensively studied experimentally, being the first subject of NMR 

experiments to characterize individual hydration water molecules in proteins26, and 

also the first protein to be simulated with molecular dynamics27.  More recently D.E. 

Shaw Research reported a remarkable 1.03ms MD simulation of BPTI in explicit 

water28. Using our aMD implementation in pmemd.cuda, we have performed a 500ns 

aMD simulation of BPTI, maintaining the same conditions as the simulation on Anton. 
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Using the 1.03ms simulation of BPTI acquired from D.E. Shaw Research throughout 

our analysis, we have shown both methodologies sample the same conformational 

space. Additionally, we performed a second 500ns cMD simulation to use as a 

measure of the amount of sampling attainable by regular MD with the same 

computational effort To the best of our knowledge our aMD implementation is the 

first to support GPU acceleration and the work presented here represents the longest 

single aMD simulation of a biomolecule run to date. Both Amber simulations were 

completed in two weeks on individual desktop computers containing a single $500 

GTX580 GPU.  Details of the simulations can be found in the supplementary material. 

IV.D Results 

IV.D.1 Structural Analysis 
	
  

In the Anton millisecond simulation, five long-lived structural states were 

identified that persisted for 6-26µs with deviations of up to 3.5Å from the crystal 

structure, 5PTI, were observed28,29.  Using these same five structures and the crystal 

structure as references, we calculated RMSD values (heavy backbone atoms) along 

our 500ns aMD simulation, shown in Figure IV.1.  RMSD results show we sample 

structures less than 1.0Å away for four of the five long-lived states and 2.0Å for the 

third state.  The RMSD with respect to the X-RAY structure shows that the protein 

moves away from the crystal structure 10ns into the simulation and achieves a 

maximum RMSD of 2.9 Å before coming back to within 0.45Å emphasizing that the 

system is sampling states both far from, and near to, the crystal structure as was seen 
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in the long 1ms cMD simulation.  Three more large transitions are observed in the 

simulation around 300ns, 340ns, and 450ns while none are observed in the 500ns 

cMD simulation.    

 

Figure IV 1 RMSD of the aMD trajectory with respect to each of the long-lived structures identified 
from the 1ms cMD BPTI simulation. The colors red, blue, green, purple, and black correspond to the 
colors of the kinetic clusters identified in the 1ms cMD BPTI paper.  The grey color represents RMSD 
with respect to the crystal structure 5PTI.  The dashed black line is set at 2.0Å in all the plots as a 
reference.  

 

IV.D.2 Explored Conformational Space 
	
  

To characterize the conformational states explored in more detail, principal 

component analysis was carried out on the 500ns aMD simulation using Bio3D30.  

Figure 2a displays the two-dimensional representation of the structural dataset as a 

projection of the Boltzmann reweighted distribution onto the subspace defined by the 

first and second principal component vectors (PC1 and PC2) built from the C-alpha 

atoms spanning residues 4 to 54.  In this analysis, PC1 and PC2 describe 40% and 

16%, respectively, of the total variance of the motions in the simulation (Movies S2-

S3).  The five long-lived structures and the crystal structure were then projected into 
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this space.  The 500ns cMD control simulation and the 1ms cMD simulation were also 

projected into the subspace defined by the aMD simulation (Figures IV.2b and IV.2c).  

It is clear from this figure that the 500ns cMD control simulation does not explore the 

amount of space that the aMD simulation does and is trapped in the basin localized 

around the crystal structure.  The aMD simulation has a very broad basin around the 

crystal structure (-2.5, 0.0) as one might expect. This is in contrast to the 1ms cMD 

simulation, which heavily samples the basin around (-2.5, -5.0) away from the crystal 

structure. As explained later this is what is ultimately responsible for the observed 

populations in the Anton 1ms cMD simulation differing substantially from 

experiment.  

 

 
Figure IV 2 The free energy principal component projection of (a) 500ns aMD simulation (b) 500ns 
cMD simulation and (c) 1ms simulation onto (PC1, PC2) defined by the aMD simulation.  The long-
lived structures are projected onto the free energy surface and are labeled as red, blue, green, purple, 
and black triangles. The crystal structure, 5PTI, is demarked by the red diamond (see also movie S1). 

IV.D.3 NMR Observables 
	
  

The recent analysis carried out by Xue et al. examined in detail the χ1, χ2, and 

χ3 dihedral angles associated with the disulfide bond formed between Cysteine 14 and 

Cysteine 38 during the course of the 1ms cMD BPTI simulation31.  In this 

communication a similar analysis was performed.  Figure IV.3a shows the Boltzmann 
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reweighted χ1(C14) vs. χ1(C38) free energy surface explored throughout the 500ns 

aMD simulation. In contrast, the 500ns control cMD simulation never visits the 

minima explored by the aMD simulation and again remains trapped in a state close to 

the crystal structure (Figure IV.3b), as was seen in the PC projections.  Comparing the 

free energy surface explored by the long 1ms cMD simulation (Figure IV.3c) to that of 

our aMD simulation, it is clear the aMD simulation explores the same states as the 

unbiased simulation The χ2, and χ3 dihedral angles associated with Cys14 and Cys38 

can be used to further describe isomerization configurations of the disulfide bond: the 

major state M which consists of three substates (M1, M2, and M3) and the two minor 

or excited states mC38, and mC14
31.  A detailed description of these states is included in 

the supplementary material (Figure IV.4), which can be compared to those analyzed 

by Xue et al. for the 1ms cMD simulation.  In contrast with the 1ms cMD simulation, 

which predicts the excited state mC14 to be the most populated, we find the major state 

M to be the most populated (61%) after Boltzmann reweighting our distribution.  We 

also find agreement with the observed experimental excited state populations for mC14 

and mC38 (Table IV.2). 
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Table IV 1 15N Chemical Shift Differences between the conformational states M1(M),mC14, and mC38. 

 
ΔδM1,mC14(ppm) 

 
ΔδM1,mC38(ppm) 

res. exptl32 1ms cMD33 500ns aMD 

 

exptl26 1ms cMD33 500ns aMD 

C14  3.6  1.8  3.4  -0.4  0.6  0.1 

K15  4.7 -1.4  0.2  -0.5 -1.5 -0.1 

C38 |0.8| -2.2 -0.1  -1.7 -1.9 -3.2 

R39 |1.2| -0.5 -2.3  -3.7 -2.6 -3.7 

        

 

Structures from states M, mC38, and mC14 were extracted from the trajectory by 

using the lowest energy structure in the M state as a reference to select an ensemble of 

structures with similar energy from each of the three basins for performing the 

chemical shift analysis.  Using the SHIFTX2 software package34 chemical shift 

differences were computed between the ensembles representing the different substates 

(Table IV.1).  A rms deviation of 1.8 ppm was obtained from the aMD simulation 

(computed for the shifts with known sign) compared to 2.7 ppm computed from the 

1ms cMD simulation.  In general, good agreement is achieved with values calculated 

from the 1ms cMD simulation and the experimental values32,35.  We would like to 

highlight the fact that one cannot compute these values using only 500ns of cMD since 

the simulation never explores the excited states during the course of such a short 

simulation (Figure IV.3b). 
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Figure IV 3 The χ1-C14 vs. χ1-C38 dihedral angle free energy surfaces of (a) 500ns aMD simulation (b) 
500ns cMD simulation and (c) 1ms cMD simulation.  The long-lived stable states are plotted onto the 
free energy surface and are labeled as red, blue, green, purple, and black triangles. The crystal structure, 
5PTI, is demarked by the red diamond.  The major state M is labeled along with the minor states mC14 
and mC38. 

IV.D.4 Water Occupancy 
	
  

Examination of the water occupancy throughout the aMD simulation correctly 

identifies the four long-lived waters in agreement with experiment36.  The longest-

lived water, W122, is identified by the 1ms cMD simulation as having a lifetime of 14 

µs. During the course of the aMD simulation, several exchange events are captured at 

this location and an interesting “revolving door” mechanism is identified, whereby the 

disulfide bond rotates around and pushes the water out of the pocket (highlighted in 

movie S4). The longest binding events of water molecules at this site occur when in 

the “crystallographic” basin of the aMD simulation, consistent with the 1ms cMD 

simulation.   

IV.E Conclusion 
	
  

This work shows that using conventional off the shelf GPU hardware 

combined with an enhanced sampling algorithm, events taking place on the 

millisecond time scale can be effectively, and correctly, sampled with dynamics 

simulations orders of magnitude shorter (2000X) than those time scales.  The 
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implementation is validated in this work by comparison with a long unbiased cMD 

simulation and experimental information. Structurally, we show the long-lived states 

identified by the 1ms cMD simulation have been sampled both in terms of RMSD and 

coverage in PC space.  We demonstrate that access to these states cannot be obtained 

with the same length of simulation carried out using conventional MD.  Important 

structural waters were preserved and found to exhibit the same occupancies as those 

experimentally.  Most importantly, chemical shift differences computed from the aMD 

simulation were found to be in better agreement with experiment compared to those 

calculated from the long 1ms cMD simulation. Furthermore, we show that the correct 

relative dihedral populations were obtained from the aMD simulation compared to the 

1ms cMD simulation.  We conclude by emphasizing never before has the aMD 

method been benchmarked against a long cMD simulation and we commend D.E. 

Shaw Research for providing their data to the community.  

IV.F Supporting Information 

IV.F.1 Computational Details 
	
  

We prepared the simulation of BPTI using the MD software package 

AMBER11, maintaining a protocol that mimics that of Shaw and coworkers1.  The 

structure was selected from the first alternative structure of the joint neutron/X-ray 

refined structure with PDB ID 5PTI, with deuterium atoms changed to hydrogen 

atoms2.   The system was solvated in a cubic box with sides measuring 52 Å 

containing 6 chloride ions and 4215 water molecules, modeled using the AMBER 
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ff99SB-ILDN force field3,4.  The water was modeled with the 4-particle TIP4P-Ew 

force field5, which was previously shown to better describe the rotational motion of 

proteins6 than the related 3-particle water model, TIP3P7.  We applied SHAKE to 

constrain all bonds involving hydrogen atoms8.  We minimized the resulting structure 

to remove any clashes.  We applied harmonic positional restraints of strength 10 

kcal/mol/Å2 to the protein backbone atoms, kept the pressure at 1 atm and increased 

the temperature from 10K to 300K as a linear function of time over the course of 

1.2ns, using Berendsen temperature and pressure control algorithms with relaxation 

times of 0.5 picoseconds for both the barostat and the thermostat9.  We removed the 

restraints and performed a 6-ns simulation at constant isotropic pressure of 1 atm and 

temperature of 300K.  We used a 10-Å cutoff radius for range-limited interactions, 

with Particle Mesh Ewald electrostatics for long-range interactions10.   We also note 

that in this study we did not modify the omega torsions of the peptide backbone as 

suggested by Doshi and Hamelberg in order to maintain as closely the parameters used 

in the Shaw study11.   

The production simulation of BPTI using cMD on the GPU was carried out 

using NVT conditions.  A Langevin thermostat was used to maintain the temperature 

at 300K with a collision frequency of 2ps.  The simulation time step was 2fs and snap 

shots were saved every 2ps.  An average dihedral energy and total potential energy 

was computed from 50ns of cMD and used as a reference for the aMD simulations.  

The aMD simulations were carried out using the exact same conditions as described 

above starting from the equilibrated simulation used for the 50ns cMD simulation.  
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IV.F.2 Details of aMD 
Accelerated MD modifies the energy landscape by adding a boost potential, 

ΔV(r), to the original potential energy surface when V(r) is below a pre-defined energy 

level E 12 , as 

 Δ! ! =   
0,                                                    ! !   ≥ !
(!!! ! )!

!  !(!!! ! )
                ! ! < !                                 (IV.1) 

where α modulates the depth and the local roughness of the energy basins on the 

modified potential. In principle, this approach also allows the correct canonical 

average of an observable, calculated from configurations sampled on the modified 

potential energy surface, to be fully recovered from the accelerated MD simulations. 

In order to simultaneously enhance the sampling of internal and diffusive degrees of 

freedom a dual boosting approach was employed, based on separate torsional and total 

boost potentials as 13 

 ! ! = !! ! +   !!(!)                                                        (IV.2) 

!∗(!) = !! ! + !! ! + Δ!! ! + Δ!!(!)           (IV.3)

  

 

where Vo(r) is the original potential, Vt(r) is the total potential of the torsional terms, 

ΔVt(r) and ΔVT(r) are the boost potentials applied to the torsional terms Vt(r) and the 

total potential energy VT(r), respectively. 
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IV.F.3 Selection of boost parameters 
Selection of the boost parameters E and α for dihedral boost and the total boost 

is based on the average dihedral and total potential energy obtained at the end of the 

50ns simulation.  These values correspond to 619 kcal/mol for the dihedral energy and 

-49106 kcal/mol for the total potential energy.  In our simulation we have a total of 58 

protein residues and 18,226 total atoms.  Previous dual boost simulations have 

suggested that the torsional boost parameter, E(dih), should be set equal to the average 

dihedral energy, Vo(dih), obtained from the cMD simulation plus 4 kcal/mol times the 

number of solute residues and the alpha(dih) paramter is then set to 1/5 of this 

value14,15.  So for our system we set the following for our dihedral boost parameters: 

E(dih)=619 kcal mol-1  + (4kcal mol-1 residue-1  * 58 solute residues) = 851 kcal mol-1 

Alpha(dih)=(1/5)*(4kcal mol-1 residues-1 * 58 solute residues) = 46.4kcal mol-1 

For the total boost parameter, E(tot),  the value should be equal to 0.16 * total number 

of atoms plus the average total potential energy, Vo(tot), obtained from the cMD 

simulation and the alpha(tot) should simply be 0.16*total number of atoms15,16.  So for 

our system we set the following:  

E(tot)= -49106 kcal mol-1  + (0.16kcal*mol-1  atom-1  * 18,226 atoms) = -46190 kcal 

mol-1   

Alpha(tot)= (0.16kcal mol-1  atom-1  * 18,226 atoms) = 2916 kcal mol-1   

Within our input file for running the simulation we then include these four parameters.   
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IV.F.4 Reweighting 
	
  

We collect the bias potentials for both total and dihedral boost for every frame 

and reweight each frame accordingly.  In this work several two-dimensional free 

energy profiles were reweighted and here we describe the procedure as applied to the 

PCA plots:  

A two-dimensional (2D) histogram was constructed with a bin width and height of 1Å.  

An indicator function, δkij, denotes whether the (PC1, PC2) coordinates fall in the bin 

(PC1i, PC2j) for frame k, 

 δ  !"# =   
1            (!"1,!"2)! ∈   !"1! ,!"2! ,
0                                                                              !"ℎ!"  !"#$.

                      (IV.4) 

 The reweighted histogram at bin (PC1i, PC2j) is then given by 

 !!" = (!
!!! δ  !"# ∗ exp  (βΔ!!),                                         (IV.5) 

where K is the total number of snapshots, and ΔVk is the boost potential at frame k.  In 

this work the exponential was approximated using a 10th order Maclaurin series 

expansion but several other reweighting schemes are also applicable17.  The histogram 

of cMD simulations can be obtained using the same equation by setting the boost 

potential to zero.  The PC1-PC2 free energy profile is then determined by  

 !!" = −!!!ln!!" +!!,                                                     (IV.6) 

where Wo is an arbitrary constant.  In this work, Wo was chosen such that the minimum 

of the free energy profiles was set to zero. 

Movie S1.  Shows how the simulation explores the χ1 (C14) vs χ1 (C38) space as well 

as the PC1 vs PC2 space throughout time.  The scales for the plots are the same as 

those found in figures 2a and 3a.  
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Movie S2-S3.  Shows the range of motion of BPTI along PC1 (cyan) and PC2 (red).  

Movie S4.  Shows an average isomap of water occupancy computed from the full 

trajectory superimposed on top of the simulation.  The 4 long-lived waters W122, 

W111, W112, and W113 identified in the 1ms cMD simulation persist in the same 

region identified in the crystal structure 5PTI during the aMD simulation.   

Representing the waters that exchange with different colors highlights the exchange 

occurring at site W122.   VMD was used to perform the analysis and the water 

selection was based on the same one used for the analysis of the waters in the 1ms 

cMD simulation.       

IV.F.5 Population Analysis 
	
  
Table IV 2 Conformational species of BPTI classified according to the isomeric state of the C14-C38 
disulfide bridge 

Conformational States 
Exptl 

pop(%) 

1ms cMD 

pop(%) 

500ns aMD 

pop(%) 
M(Grey et al. 18) ~95 34 61 

mC14(Grey et al. 18) ~1 50 2.6 

mC38(Grey et al. 18) ~4 6 7.9 
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Figure IV 4 (a) Scatter plot of χ1(C14) vs. χ1(C38) derived from the 500ns aMD simulation of BPTI.  
The data are colored according to χ3 values; the clusters that contain conformational species M, mC14, 
and mC38 are labeled in the plot.  (b) Scatter plot of χ2(C14) vs χ2(C38) for conformational species M, 
where M are defined as follows: -120° < χ1(C14) < 0°; 0° < χ1(C38) < 120°; 0<χ3<180°.  The cluster 
structure observed in this plot serves as a basis for separating the microstates M1, M2, and M3. (c) 
Scatter plot of χ2(C14) vs χ2(C38) for conformational species mC14, where mC14 are defined as follows:  
0° < χ1(C14) < 120°; 0° < χ1(C38) < 120°; -180° < χ3 < 0°. (d) Scatter plot of χ2(C14) vs χ2(C38) for 
conformational species mC38, where mC38 are defined as follows: -120° < χ1(C14) < 0°; -120° < χ1(C38) 
< 0°; -180° < χ3 < 0°.  For the purpose of plotting, torsional angles χ1(C14)-χ1(C38) are defined over 
the interval from -120° to 240° (0° to 360°). In the main text, the standard range is used for both angles, 
-180° to 180°.  The corresponding plot for the 1ms cMD simulation can be found in the supplementary 
material of Xue et al. 19. 

IV.G Acknowledgement 
	
  

This research used resources of the Keeneland Computing Facility at the 

Georgia Institute of Technology, which is supported by the National Science 

Foundation under Contract OCI-0910735.  This work was funded in part by the 

National Science Foundation through the Scientific Software Innovations Institutes 

program - NSF SI2-SSE (NSF1047875) and subsequent grants to R.C.W and also by 

the University of California (UC Lab 09-LR-06-117792) grant to R.C.W. Computer 



	
   	
  

	
  

97	
  

time was provided by the San Diego Supercomputer Center through National Science 

Foundation award TGMCB090110 to R.C.W. The work was also supported by a 

CUDA fellowship to R.C.W. from NVIDIA.  The J.A.M group is supported by NSF, 

NIH, HHMI, NBCR and CTBP.  

This chapter contains material from “Routine access to millisecond time scales 

with accelerated molecular dynamics” (submitted) to Journal of Chemical Theory and 

Computation, authored by Levi C.T. Pierce, Romelia Salomon-Ferrer, Cesar Augusto 

F. de Oliveira, J. Andrew McCammon, and Ross C. Walker. All material has been 

reproduced with the consent of all other authors.   

Article II. IV.H References 
	
  
(1) Kubelka, J.; Chiu, T. K.; Davies, D. R.; Eaton, W. A.; Hofrichter, J. J Mol Biol 
2006, 359, 546. 
 
(2) Schaeffer, R. D.; Fersht, A.; Daggett, V. Curr Opin Struct Biol 2008, 18, 4. 
 
(3) Freddolino, P. L.; Schulten, K. Biophys J 2009, 97, 2338. 
 
(4) Gilson, M. K.; Zhou, H. X. Annu Rev Biophys Biomol Struct 2007, 36, 21. 
 
(5) Lindahl, E.; Sansom, M. S. Curr Opin Struct Biol 2008, 18, 425. 
 
(6) Khalili-Araghi, F.; Gumbart, J.; Wen, P. C.; Sotomayor, M.; Tajkhorshid, E.; 
Schulten, K. Curr Opin Struct Biol 2009, 19, 128. 
 
(7) H., G. Phys. Rev. E 1995, 52. 
 
(8) Lange, O. F.; Schäfer, L. V.; Grubmüller, H. Journal of Computational 
Chemistry 2006, 27, 1693. 
 
(9) Voter, A. F. Physical Review Letters 1997, 78, 3908. 
 
(10) Voter, A. F. J Chem Phys 1997, 106, 4665. 
 



	
   	
  

	
  

98	
  

(11) Bussi, G.; Laio, A.; Parrinello, M. Physical Review Letters 2006, 96, 090601. 
 
(12) Leone, V.; Marinelli, F.; Carloni, P.; Parrinello, M. Curr Opin Struct Biol 
2010, 20, 148. 
 
(13) Darve, E.; Pohorille, A. J Chem Phys 2001, 115, 9169. 
 
(14) Darve, E.; Rodriguez-Gomez, D.; Pohorille, A. J Chem Phys 2008, 128, 
144120. 
 
(15) Henin, J.; Fiorin, G.; Chipot, C.; Klein, M. L. Journal of Chemical Theory and 
Computation 2009, 6, 35. 
 
(16) Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson, R. H.; 
Salmon, J. K.; Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C.; Eastwood, M. P.; 
Gagliardo, J.; Grossman, J. P.; Ho, C. R.; Ierardi, D. J.; Istv; #225; Kolossv, n.; ry; 
Klepeis, J. L.; Layman, T.; McLeavey, C.; Moraes, M. A.; Mueller, R.; Priest, E. C.; 
Shan, Y.; Spengler, J.; Theobald, M.; Towles, B.; Wang, S. C. In Proceedings of the 
34th annual international symposium on Computer architecture; ACM: San Diego, 
California, USA, 2007, p 1. 
 
(17) Dror, R. O.; Arlow, D. H.; Maragakis, P.; Mildorf, T. J.; Pan, A. C.; Xu, H.; 
Borhani, D. W.; Shaw, D. E. Proceedings of the National Academy of Sciences 2011, 
108, 18684. 
 
(18) Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; Seeliger, M. A.; Shaw, D. 
E. Journal of the American Chemical Society 2011, 133, 9181. 
 
(19) Harvey, M. J.; Giupponi, G.; Fabritiis, G. D. Journal of Chemical Theory and 
Computation 2009, 5, 1632. 
 
(20) Friedrichs, M. S.; Eastman, P.; Vaidyanathan, V.; Houston, M.; Legrand, S.; 
Beberg, A. L.; Ensign, D. L.; Bruns, C. M.; Pande, V. S. Journal of Computational 
Chemistry 2009, 30, 864. 
 
(21) Hamelberg, D.; Mongan, J.; McCammon, J. A. J Chem Phys 2004, 120, 11919. 
 
(22) Hamelberg, D.; de Oliveira, C. A.; McCammon, J. A. J Chem Phys 2007, 127, 
155102. 
 
(23) Wang, Y.; Harrison, C. B.; Schulten, K.; McCammon, J. A. Comput Sci Discov 
2011, 4. 
 
(24) D.A. Case, T. A. D., T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. 
Duke, R. Luo, R.C. Walker, W. Zhang, K.M. Merz, B.P. Roberts, B. Wang, S. Hayik, 



	
   	
  

	
  

99	
  

A. Roitberg, G. Seabra, I. Kolossváry, K.F. Wong, F. Paesani, J. Vanicek, J. Liu, X. 
Wu, S.R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. 
Cui, D.R. Roe, D.H. Mathews, M.G. Seetin, C. Sagui, V. Babin, T. Luchko, S. 
Gusarov, A. Kovalenko, and P.A. Kollman University of California, San Francisco 
2010. 
 
(25) Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Grand, S.L.; Walker, R.C. 
Journal of Chemical Theory and Computation, 2012, in review. 
 
(26) Otting, G.; Liepinsh, E.; Wuethrich, K. Journal of the American Chemical 
Society 1991, 113, 4363. 
 
(27) McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature 1977, 267, 585. 
 
(28) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; 
Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan, Y.; Wriggers, W. 
Science 2010, 330, 341. 
 
(29) Wlodawer, A.; Walter, J.; Huber, R.; Sjolin, L. J Mol Biol 1984, 180, 301. 
 
(30) Grant, B. J.; Rodrigues, A. P.; ElSawy, K. M.; McCammon, J. A.; Caves, L. S. 
Bioinformatics 2006, 22, 2695. 
 
(31) Xue, Y.; Ward, J. M.; Yuwen, T.; Podkorytov, I. S.; Skrynnikov, N. R. Journal 
of the American Chemical Society 2012. 
 
(32) Grey, M. J.; Wang, C.; Palmer, A. G., 3rd Journal of the American Chemical 
Society 2003, 125, 14324. 
 
(33) Xue, Y.; Ward, J. M.; Yuwen, T.; Podkorytov, I. S.; Skrynnikov, N. R. Journal 
of the American Chemical Society 2012, 134, 2555. 
 
(34) Han, B.; Liu, Y.; Ginzinger, S. W.; Wishart, D. S. J Biomol NMR 2011, 50, 43. 
 
(35) Berndt, K. D.; Beunink, J.; Schroeder, W.; Wuethrich, K. Biochemistry 1993, 
32, 4564. 
 
(36) Persson, E.; Halle, B. Journal of the American Chemical Society 2008, 130, 
1774. 

IV.I Suplemental References 
	
  



	
   	
  

	
  

100	
  

(1) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; 
Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan, Y.; Wriggers, W. 
Science 2010, 330, 341. 
 
(2) Wlodawer, A.; Walter, J.; Huber, R.; Sjolin, L. J Mol Biol 1984, 180, 301. 
 
(3) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. 
Proteins 2006, 65, 712. 
 
(4) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, 
R. O.; Shaw, D. E. Proteins 2010, 78, 1950. 
 
(5) Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. 
L.; Head-Gordon, T. J Chem Phys 2004, 120, 9665. 
 
(6) Wong, V.; Case, D. A. J Phys Chem B 2008, 112, 6013. 
 
(7) W. L. Jorgensen, J. C., J. D., Madura, R. W. Impey, M. L. Klein AIP 1983, 79, 
10. 
 
(8) Lippert, R. A.; Bowers, K. J.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.; 
Klepeis, J. L.; Kolossvary, I.; Shaw, D. E. J Chem Phys 2007, 126, 046101. 
 
(9) al., H. J. C. B. e. J. Chem. Phys. 1984, 81, 7. 
 
(10) Darden, T., D. York, and L. Pedersen AIP 1993, 98, 4. 
 
(11) Doshi, U.; Hamelberg, D. J Phys Chem B 2009, 113, 16590. 
 
(12) Hamelberg, D.; Mongan, J.; McCammon, J. A. J Chem Phys 2004, 120, 11919. 
 
(13) Hamelberg, D.; de Oliveira, C. A. F.; McCammon, J. A. J Chem Phys 2007, 
127, 155102. 
 
(14) Grant, B. J.; Gorfe, A. A.; McCammon, J. A. PLoS Comput Biol 2009, 5, 
e1000325. 
 
(15) de Oliveira, C. s. A. F.; Grant, B. J.; Zhou, M.; McCammon, J. A. PLoS 
Comput Biol 2011, 7, e1002178. 
 
(16) Hamelberg, D.; de Oliveira, C. A.; McCammon, J. A. J Chem Phys 2007, 127, 
155102. 
 
(17) Shen, T.; Hamelberg, D. J Chem Phys 2008, 129, 034103. 



	
   	
  

	
  

101	
  

(18) Grey, M. J.; Wang, C.; Palmer, A. G., 3rd Journal of the American Chemical 
Society 2003, 125, 14324. 
 
(19) Xue, Y.; Ward, J. M.; Yuwen, T.; Podkorytov, I. S.; Skrynnikov, N. R. Journal 
of the American Chemical Society 2012. 
 




