
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Integration of the predictions of two models with dose measurements in a case study of 
children exposed to the emissions of a lead smelter

Permalink
https://escholarship.org/uc/item/4507n590

Author
Bonnard, R.

Publication Date
2009-12-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4507n590
https://escholarship.org
http://www.cdlib.org/


1 
 

Integration of the predictions of two models with dose 
measurements in a case study of children exposed to the 

emissions of a lead smelter 
 
 

1R. Bonnard and 2T.E. McKone 
 
 

1INERIS (Institut National de l'Environnement Industriel et des Risques)  
Parc Technologique Alata, 60550 

 Verneuil-en-Halatte, France 
 
 

2Environmental Energy Technologies Division 
Lawrence Berkeley National Laboratory 

Berkeley, CA 94720 
 
 
 

March 2009 
 
 

 
 
 
 
 
 
This work was supported in part by the US Environmental Protection Agency through 
Interagency Agreement DW-988-38190-01-0 carried out through the US Department of 
Energy contract Grant No. DE-AC02-05CH11231. McKone was also supported by 
Cooperative Agreement Number U19/EH000097-03 from the US Centers for Disease Control 
and Prevention (CDC). 



2 
 

Integration of the predictions of two models with dose measurements 
in a case study of children exposed to the emissions of a lead smelter 

Abstract  

The predictions of two source-to-dose models are systematically evaluated with observed 

data collected in a village polluted by a currently operating secondary lead smelter. Both 

models were built up from several sub-models linked together and run using Monte-Carlo 

simulation, to calculate the distribution children’s blood lead levels attributable to the 

emissions from the facility. The first model system is composed of the CalTOX model linked 

to a recoded version of the IEUBK model. This system provides the distribution of the 

media-specific lead concentrations (air, soil, fruit, vegetables and blood) in the whole area 

investigated. The second model consists of a statistical model to estimate the lead deposition 

on the ground, a modified version of the model HHRAP and the same recoded version of the 

IEUBK model. This system provides an estimate of the concentration of exposure of specific 

individuals living in the study area. The predictions of the first model system were improved 

in terms of accuracy and precision by performing a sensitivity analysis and using field data to 

correct the default value provided for the leaf wet density. However, in this case study, the 

first model system tends to overestimate the exposure due to exposed vegetables. The second 

model was tested for nine children with contrasting exposure conditions. It managed to 

capture the blood levels for eight of them. In the last case, the exposure of the child by 

pathways not considered in the model may explain the failure of the model. The interest of 

this integrated model is to provide outputs with lower variance than the first model system, 

but at the moment further tests are necessary to conclude about its accuracy. 

 

Keywords : Exposure assessment, multimedia models, probabilistic risk assessment, lead, 

IEUBK. 
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INTRODUCTION 

Exposure models for chemicals are used around the world to assess the human health risks 

and to support regulatory decision making. For example, they are used to support policies for 

pollution control (Bonnard 2006) such as the Hot Spots Program of California Environmental 

Protection Agency (OEHHA 2003), in which the risks linked to atmospheric emissions from 

existing facilities are estimated. They are also used in France for Registered Installations for 

Protection of the Environment (INERIS 2003), which requires a human health risk 

assessment study to be performed and included in all the environmental impact analyses for 

new or modified facilities. Exposure models are also employed to estimate the risks linked to 

manufactured substances, as required by the European regulation for new and existing 

substances (EC 2003, 2004). Many countries define safety limits with models for various 

exposure media such as food, water and air (WHO 1993, 2000 and national regulations), as 

well for soils, for which human health risk assessment is used to identify, prioritise and assess 

the need for remedial actions (US EPA, Ferguson 1999). 

Because of the critical role played by models, scientists are required to show that their 

predictions are reliable. Even though a “model can never be truly validated, (but only 

invalidated)”(Oreskes 1998, NCR 2007), it is still necessary to evaluate its fitness for use. 

Part of this process is checking if models yield results matching the observations from field 

studies, and for the right reasons (that is by providing the correct cause-effect relationships 

between input and output) and capture this link with a sufficient level of precision. 

In the context of industrial facilities and contaminated soils, health risk assessment studies 

employ multimedia exposure models to predict contaminations at a local scale and sometimes 

employ physiologically based pharmacokinetic (PBPK) models, when the exposure levels 

need to be expressed in terms of internal doses, as for lead, whose risk management threshold 

value is usually fixed at 100 µg/l in blood for children.  

A number of different multimedia models have undergone empirical evaluation in the last 

decade, but these exercises were carried out at regional or continental scales (Schwartz 2000) 

and most of the time, they were limited to environmental concentrations (Kawamoto and Park 

2006, Armitage et al. 2007, Luo and Yang 2007). In the case of the PBPK models, results 

have been evaluated with subjects in controlled conditions where there were either 

administrated doses or measured environmental concentrations (Cohen et al. 1998, Hogan et 
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al. 1998, Griffin et al. 1999, Biesiada et al. 1999, Glorennec et al. 2007a), but none of these 

studies have tracked multimedia transport from a contamination source. Because of the 

difficulties in collecting for the same period and the same location sufficient data for the 

source emissions, environmental concentrations, activity patterns, biomonitoring data, and 

reconstructing past exposures, predictions of multimedia models have seldom been compared 

with biomonitoring data from the source of contamination. Such an analysis was conducted in 

a case of contaminated soils by polycyclic aromatic hydrocarbons (Dor et al. 2003), where 

urinary 1-hydroxypyren data collected from workers were compared to the levels predicted 

by several multimedia models. That study showed discrepancies among the models tested, in 

terms of magnitude of the output and of predominant exposure pathways. However, the 

authors carried out comparisons using a deterministic approach with a point estimate obtained 

from the different models. Because they did not know the precision of those point estimates, 

they could not determine to what extent these point estimates were truly different or even 

comparable.  

The goal of this paper is to evaluate the performance (accuracy and precision) of two source-

to-dose modeling approaches, for a contaminated site by a secondary-lead smelter. Lead 

contamination was selected because lead is a contaminant often considered in health risk 

assessments for industrial sites. At such sites, lead can be found in various exposure media, a 

situation that requires consideration of multiple exposure pathways and provides the 

opportunity to assess exposure levels both by modeling and measuring blood lead. The 

comparison of lead measurements and lead modeling results can be carried out at several 

levels: first in environmental media (such as air or soil), second in exposure media (such as 

vegetables) and lastly in the human body. The intermediate points of comparison help to 

determine at which level discrepancies may appear between models and observations and 

whether the final results are correct for the right reasons. With this approach, one strives not 

only for good agreement between models and observations (exposure model predictions 

versus biomarker data) but uses the intermediate steps to confirm consistent hypotheses 

regarding the magnitude and variation among competing exposure pathways. 

METHODS 

The lead smelter is located in a French village. The local authorities have ordered many 

investigations in this village and have implemented a control of the environment media 

concentrations for several years. The data available were collected in order to carry out the 
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model evaluations and several campaigns of measurements were performed to complete the 

dataset. 

Two source-to-dose models, built-up from existing sub-models, were used for this study and 

run simultaneously by Monte-Carlo sampling from the ranges of parameter input values. 

The data related to the site and the models used are presented in the following subsections. 

The data not shown (measurement data and input parameters of the models) are detailed in a 

report available upon request (Bonnard 2008). 

Study Village and Lead Emissions 

The village has about 800 inhabitants. The facility producing lead began operations in 1970. 

It recycles lead from engine-batteries. In relation to the facility, houses are located in a sector 

between the north-north-east axis to the south-west axis, with the major portion of them been 

located between the north-east and the south-east axes. The distance from the facility stacks 

ranges from 100 meters to 1 km. Currently, this smelter is the only facility in the village 

emitting lead in the atmosphere. From 2000 to the end of 2001, several measures were 

implemented to reduce the contamination linked to its activity. These measures resulted in a 

significant reduction of the atmospheric emissions of lead. 

Child Biomonitoring Data and Exposure Survey 

A biomonitoring campaigns for children’s blood lead was carried out in this village in June 

2002 by the local health administration. A questionnaire was filled out for each child at that 

sampling time to collect information on his or her exposure conditions. The questionnaire 

documented age, residence time in the village, places frequented, age of the home, proportion 

of fruit and vegetables consumed from the family garden, type of water (tap or bottled) 

consumed, and parents’ place of work.  

To protect the confidentiality of the children, we were not able to obtain the exact location of 

the house where each child dwelled. Only the distance to the facility was provided, with an 

indicator, going from 1 to 3, expressing the propensity of the wind blowing from the facility 

towards the child’s house. In addition, a map was provided to us indicating three different 

sectors assigned a wind propensity value equal to 1, three others a value of 2, and two sectors 

a value of 3. 
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Among all the children likely to be exposed, 67% took part into the study, namely 97 

children. Among them, 19 had parents working in the facility. Because the local sanitary 

authorities have demonstrated a positive link between the children’s blood lead and the 

parents working in the facility for this sample of data (Schmitt et al 2002) and since no 

multimedia exposure model is currently able to take into account such a relationship, we only 

kept the lead blood data from the 78 children whose parents did not work in the facility. 

Environmental Media Measurements 

Air concentrations 

Daily air concentration data are collected from ATMO Champagne (2002), a public 

association in charge of monitoring the air quality. An air sampler, measuring PM10, was 

placed in the village at 120 meters from the facility stacks. Air concentrations were measured 

by atomic absorption spectrometry (AFNOR, 1990). 

Plant concentrations 

A monitoring program has been conducted by a private company. Each year, it consists of the 

collection of about 20 samples of fruit or vegetables, from 6 or 7 volunteers’ gardens, located 

between 80 to 600 meters from the facility. All the samples are prepared and washed before 

being analysed (Prost 2002-2005).  

Deposition to the ground surface 

A campaign was conducted to measure monthly lead deposition on the ground at 15 locations 

in the village, using deposit gauges (ISO 1989). These measurements were made in October 

and November 2005. One duplicate device was used to check the reproducibility and 7 of the 

samples collected were distributed on the North-East axis relating to the facility, which 

corresponds to the preferential wind direction. The results of this measurement campaign, as 

reported in Bonnard (2008), showed a clear decreasing level of deposition with the distance. 

Soil concentrations 

Several campaigns of soil lead concentration measurements have been performed in the 

village since 1998. However, because of the location and the depth of the samples, few data 

could be considered as representative of the population exposure. Thus, there were two 
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additional measurement campaigns in the summer of 2006. The first consisted of 48 surface 

soil samples and 12 samples taken from the first 20 centimeters. All were composite samples 

assembled by mixing five sub-samples from the same area. The samples were not distributed 

according to a regular grid but taken in the village from locations close to dwellings and 

selected according to accessibility. The surface samples were collected in open areas and in 

the inhabitants’ gardens, where the soil had not been disturbed.  All of the the first-twenty-

centimeter samples came from the inhabitants’ kitchen gardens. The soils were digested by 

aqua regia and analysed by inductively coupled plasma optical emission spectrometry 

(ICP/OES) according to the European standard analytical method (ISO 1996, CEN 2000). 

The second campaign consisted of in-situ measurements made with a portable X-ray 

fluorescence device. Measurements were performed at 133 locations. In order to evaluate 

correlation of results between the two methods, some of the fluorescence measurements were 

made at the location where soil surface analytical samples were collected and 24 additional 

measurements by X-ray fluorescence were performed on soil samples prepared at the 

laboratory for extraction before ICP/OES analysis. During the program that monitored lead in 

vegetables cultivated by inhabitants, measurements of lead in the first twenty centimeters of 

soil were performed. They were added to our database. A geostatistical study, with a set of 

156 data corresponding to the lead concentration in the surface soil and with a set of 39 data 

corresponding to the first-twenty-centimeter soil samples, was achieved.  

Lead is characterized by a low mobility in soils and tends to accumulate in the surface layers 

(Adriano 1986, Kabatia-Pendias 1992, Alloway 1995). However, even if the quantities of 

lead collected in each gauge during our two-month-measurement campaign (while the stack 

emissions were higher than the 2002 to 2006 average ones) had been deposited on the ground 

for four years (between 2002 and 2006) and had not moved, that deposition of lead would 

correspond to an increase of the concentration in the first two centimeter layer of less than 

5%. Given this low accumulation rate, we assumed that the values measured in the soils in 

2006 are representative of the concentrations in 2002. Subject to the condition that no other 

source was added to the soils and the surface soil was not mixed with other soil layers, this 

assumption seems reasonable. 

Source to Dose Modeling 

Source to dose modeling was carried out with two alternative integrated models. Both of 

them link a multimedia fate model with a pharmacokinetic model. The first integrated model 
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is process based and its purpose is to provide a regional mass balance to track lead from a 

source to receptor using generic parameters. The second model uses an empirical relationship 

to estimate the lead deposition on the ground and is intended to be both site and receptor 

specific.  

Description of integrated model A 

Model A consists of the CalTOX multimedia fate and multi-pathway exposure model 

(Mckone 1993, 2002) integrated with the exposure-uptake-biokinetic (IEUBK) model (US 

EPA 1994, White et al 1998). We set up this model system in EXCEL© files, and ran 

probabilistic assessments with the software Crystal Ball (Decisoneering 2005).  

CalTOX is a fugacity-based mass balance model in which each environmental medium (air, 

soil, water, etc) is represented by a homogeneous compartment. IEUBK is the model 

recommended by the United States Environmental Protection Agency (US EPA) to estimate 

children’s blood lead exposure. It permits calculation of the lead intake and uptake from the 

exposure media concentrations and then determines the blood lead levels using a biokinetic 

sub-model. To address the inability of IEUBK to propagate uncertainty and variability from 

lead intake, Syracuse Research Corporation developed the Integrated Stochastic Exposure 

(ISE) model (SRC, 2003) using the same conceptual model as IEUBK but allowing for 

stochastic simulations. We did the same, by developing our own version of IEUBK using 

EXCEL© and Visual Basic, so that we could link it directly to the stochastic outputs of 

CalTOX. We checked that our implementation of IEUBK gives exactly the same results as 

the original code. With this approach our blood lead prediction model could consider 

temporal variation of lead intake and probabilistic distributions for some inputs defined as 

point estimates in the ISE model.  

We accounted for intake of lead through inhalation, soil ingestion, ingestion of local fruits 

and vegetables, and background exposure from non-local food consumption (Glorennec 

2007b). 

Based on atmospheric emissions and the distribution of lead concentrations measured in the 

first twenty centimeters of soil, model A was used with Crystal Ball to characterize the 

distributions of lead in the village air, in the surface soil, in the above-ground fruits and 

vegetables and the below-ground vegetables grown in the village, and finally in the blood of 

the children of the village. 
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Description of integrated model B 

Model B has three components: (1) a regression model that calculates lead deposition 

according to the location of the household in the village, (2) a multimedia exposure model 

that calculates local lead concentrations in environmental and exposure media based on the 

deposition rate, the surface soil concentration and the soil concentration in the first twenty 

centimeters and (3) our version of IEUBK recoded in EXCEL©.  

Model B was built to estimate lead exposures for precise locations, an approach often 

required for contaminated sites to distinguish the areas requiring remediation from those 

which do not. Unlike model A, which is aimed to capture the distribution of the 

concentrations over the whole village, model B enables to represent the exposure of 

individuals. Because the exact location of each child’s house was not known, we had to 

identify it basing on the concordance among three sources of information: (1) the child’s 

distance from the facility, (2) the sector where the house was located and (3) a bird’s-eye 

view zonal map of the village. In some cases, only one location of household corresponded to 

information derived from these three sources, in other there were several possibilities. 

Because of this difficulty, blood lead level was modeled for a subset of nine children for 

which we had identified only one or two possibilities of housing location. If there were two 

possible locations for one child’s house, two predictions were made for that child’s blood 

lead based on a different soil concentration and a different lead deposition on the ground. The 

children of this subset had contrasting exposure conditions (high, low or no consumption of 

home-grown vegetables, close or far from the facility, low or high blood lead level) (Table 1). 

We use the regression model in place of a classical gaussian air dispersion model because we 

found the accuracy of these models, which predict deposition and air concentration, at each 

point of a grid, to be inappropriate in regards of the estimation of fugitive emissions (see 

section called Source term definition). Instead we fitted deposition data collected during the 

sampling campaign (see section called Deposition to the ground surface) using a statistical 

relationship, taking into account the distance (Di in meters) of a specific location i from the 

facility, the frequency (Wij unitless) of the wind blowing from the facility towards a specific 

location during month j and the magnitude of stack emissions (Ej in g/month). We used 

Statistica (Statsoft 1999) for this analysis. We obtained the higher correlation coefficient and 

the lower residual standard deviation with the following equation by ordinary least squares: 

Ŷij = log depij = 0.35 – 1.7×10-3Di + 1.31Wij + 1.4×10-5 Ej  (ρ2 = 0.93) 
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where depij = total deposition of lead on the ground at location i during month j (in 

mg/m2/month). 

We used a Student’s T-test to test if a coefficient of this relationship is significantly different 

from zero. Although the equation above is based on data collected for only two months, all 

coefficients were found to be statistically significant. In a good regression model, residuals 

(difference between the observed values and the predicted values) are normal and 

homoscedastic (residuals have the same variance). The residuals of the above equation 

appeared normal and homoscedastic.  

We characterized the uncertainty of the predicted deposition (Ŷ) using a Student’s 

distribution, with 26 degrees of freedom, multiplied by the estimated deviation of Ŷ (Foucart 

1997). We have 26 degrees of freedom because we have 30 data to define a relationship that 

has 4 coefficients. The estimated deviation of Ŷ is a T distribution based on the residual 

estimation error from the regression model. The output of this relationship along with the 

error were used as inputs in the multimedia exposure model.  

The media concentrations were calculated from the equations described in the Human Health 

Risk Assessment Protocol (HHRAP) document (US EPA 2005). However, a supplemental 

soil layer (between 0 to 10 cm from the surface) for predicting the forage contamination from 

soil and additional classes of plants (fruit, leafy vegetables and fruit vegetables) were 

introduced, as well as equations for plant contamination by irrigation and deposition of 

resuspended soil particles. The equations used for these pathways are those given in the 

model ERMYN (US DOe 2003a). The concentrations in air, surface soil and plants yielded 

by the multimedia exposure model were used as input of the new version of IEUBK to obtain 

the child blood lead distributions. 

Values used for model parameters and inputs 

Here we describe how we obtained model inputs. First we consider the period for which we 

had to model the doses adsorbed by children to estimate their blood lead level at the time of 

the biomonitoring campaign. Next we consider the case of source terms, lead chemical 

properties, environmental parameters, intake and uptake parameters. We developed 

probability distributions for each input parameter of both models.  
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Period for reconstructing children’s intake 

The half-life of lead in blood is estimated to be one month. Although lead is also stocked in 

bones and slowly released in blood from there, it has been shown that a reduction of child 

exposure brings out a rather fast reduction of the blood lead (Declercq and Ladrière 2004, 

Khoury et al 2003). The conceptual model implemented in the IEUBK software also yields a 

rapid reduction of the blood lead, once intake is stopped. We ran the IEUBK model for the 

case of a child with a cumulative ingestion dose 3 times higher than the estimated 

background intake in France for 3 years and then a dose equal to the background intake 

(Glorennec 2007b). We found that one year after reducing the intake, the blood lead would be 

only 2 percent higher than the one calculated with the background intake for 4 years. 

Therefore, the efforts to reconstruct the intake doses were focused on a period starting from 

spring 2001 to the date of the campaign of blood lead measurements. Beforehand, the 

exposure conditions were assumed to be the same as those between January and June 2001. 

Source term definition 

Model A 

A lognormal distribution was fitted to the observed lead concentrations in the first twenty 

centimeters of soil using a Z-plot chart. The resulting distribution with an arithmetic mean of 

261 mg/kg and a standard deviation of 249 mg/kg was assigned to the root zone soil 

concentration parameter of CalTOX. 

We estimate smelter stack emissions from monthly sampling of particule emissions, the 

measurement of the lead concentration in the emitted particles and the duration of operation. 

The smelter operators try to limit the fugitive emissions by keeping the pressure inside the 

buildings lower than the outside pressure, washing outdoor surfaces daily and stocking raw 

materials products and by-products indoors. Nevertheless, preliminary calculations performed 

with an air dispersion model (CERC 2000) showed that the air concentrations and particle 

fallout recorded downwind could not be explained purely by the recorded stack emissions 

(Bonnard 2008). Therefore, we had to include fugitive emissions. We estimated them using 

three methods (inverse modeling, predictions based on the emission factors and the 

production rate, and a calculation based on the indoor air concentration in the buildings of the 

factory and the ventilation rate) and obtained consistent estimates. With inverse modeling, we 

calculated the volumetric flux required to get the best correlation between the air dispersion 

model and the lead deposition measured during the campaign conducted in October and 
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December 2005 and obtained a fugitive emissions estimate between 20 and 60 kg/month.  

Emissions factors for this type of facility and information on its production rate give fugitive 

emissions between 25 and 73 kg/month. Data on lead concentration measured in indoor air of 

the facility building with an assumption of a ventilation rate of 10 times per hour give a 

fugitive emissions estimate of 34 kg/month. 

To cover the whole growing period of the local fruit and vegetables consumed till the date of 

the campaign of blood lead measurements, stack lead emissions were estimated from the data 

recorded from April 2001 to June 2002. As information on fugitive emissions is poor, a 

triangular distribution was assigned to the total atmospheric emissions from the estimates 

obtained for the stack and the fugitive emissions during this period. The mode is equal to 

1,200 g/d, the minimum to 750 g/d and the maximum to 2,800 g/d.  

For comparing the predicted vegetation concentrations with the observed ones, the emissions 

were estimated over the vegetation exposure period to fallout from the facility (from April to 

July, in 2002 to 2005). The total atmospheric emissions were defined by a triangular 

distribution with a mode of 780 g/d, a minimum of 450 g/d and a maximum of 1,450 g/d.  

Model B 

Spatial soil mean concentration in the land associated to each child’s house was estimated by 

kriging. Cumulative distributions were defined for the surface soil and the root-zone soil 

owing to the turning band method (Chilès 1999, Bonnard 2008).  

The atmospheric emissions were estimated from the statistical model described above 

(Equation 1) for each location and period used to represent the atmospheric deposition on the 

different kinds of home-grown plants. 

Chemical properties for lead 

Model A 

With the exception of the particle-water partition coefficients, we used the default 

distributions provided by CalTOX for chemical properties—water solubility, partition 

coefficients, and bioconcentration factors. We found that the particle-water partition 

coefficient (Kd) in CalTOX was high relative to ranges found in other papers. Since Kd for 

lead is known to depend on the soil pH, we used the recommendations from the Office of Air 

and Radiation (US EPA 1999) and the pH values collected in the garden soils of the village to 

define a triangular distribution. The measured pH going from 5.3 to 8.3, the minimum and 
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maximum values for the closest ranges of soil pH, given by the Office of Air and Radiation, 

were used as minimum and maximum of the distribution (150 L/kg and 23,279 L/kg 

respectively). The mode was assigned a value of 1731 l/kg, which was calculated from the 

modal value of measured pH and the Office of Air and Radiation’s relationship between lead 

Kd and pH. 

Model B 

The parameters required for model B are the soil-plant transfer coefficients. To obtain values, 

we made a review of the primary literature and fitted the resulting dataset of selected values 

to a lognormal distribution (Table 2, Bonnard 2008). 

Environmental parameters 

Model A 

For model A we used the default distributions provided by CalTOX for all environmental 

parameters except area, rainfall, wind speed, and temperature. We replaced distributions for 

these parameters in CalTOX by local data. In addition we replace the CalTOX root zone soil 

depth with a mean value equal to 0.2 m to be consistent with the measured data for the 

village. 

Model B 

Most of environmental parameters required in model B are different from those of CalTOX. 

They mainly concern the description of the various categories of plants. Distributions were 

defined from the literature (Table 2, Bonnard 2008). 

Intake parameters 

From birth to the age of 7, we defined plant consumption and lead exposure from local food 

consumption for seven age classes based on French surveys (Boggio et al. 1999, Volatier 

2000).  

For soil ingestion, we used the cumulative distribution provided by ISE with a median equal 

to 135 mg/d (US EPA 1994, 1999). We note that other distributions with lower median values 

were available from empirical data published by Thompson et al. (1991) and Stanek et al. 

(2000, 2001). However, the IEUBK model was calibrated with a point estimate equal to 135 

mg/day. On the other hand, the lognormal distribution given in the ISE’s model for soil 

ingestion, has a standard deviation that appears too low relative to what is available in the 

literature. For example, the ratio of the 95th percentile to the 5th percentile in the ISE 
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distribution is less than 2, indicating almost no inter-individual variability. We did use the 

ISE age-specific weighting factors for soil ingestion in our recoded version. 

For model B, we use observed individual data for each child from the study population to 

obtain the age, the seasonal variation in the percentage of home-grown fruits and vegetables 

consumed, and the date of moving into the village. 

Uptake parameters 

The bioavailability of lead in food and the relative bioavailability of lead in soil were revised 

to better reflect data documented in IEUBK for these factors.  

The range reported by the USEPA in the IEUBK guidance (US EPA 1994) for absorption of 

lead from diet is 42 to 53%. These values correspond to the 40th and 63th percentiles of the 

lognormal distribution defined in the ISE model for this parameter (mean = 0.5, standard 

deviation = 0.2). A lower value was used for the standard deviation (0.05 instead of 0.2) to 

get a distribution more in accordance with the range of data given above (in these conditions, 

the low and high values given by the US EPA correspond to the 5th and 75th percentiles of the 

new distribution defined for absorption of lead from diet).  

For the absolute bioavailability of soil lead, ISE gives a point estimate of 0.3, but no 

distribution is defined. We used the values collected by Ruby et al. (1999) for lead uptake 

from soils (data from wastes and mines were eliminated), to define a normal distribution with 

a mean equal to 0.6 and a standard deviation equal to 0.2 for the relative biovailability of soil 

lead. The mean of the soil lead absolute bioavailability obtained is then close to the point 

estimate used in the IEUBK and ISE models. 

Probabilistic computation 

All of our calculations were based on Monte Carlo simulations using 5000 runs with latin-

hypercube sampling. We used the Monte Carlo results to develop cumulative probability 

distributions that can be compared to cumulative distributions of measured concentrations in 

the media. 
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RESULTS AND DISCUSSION 

Model A 

Because no significant statistical relationship between the blood level and the age could be 

identified (Schmitt et al. 2002), we analysed the model’s output as the mean of the blood lead 

from 6 months to 7 years old. 

Figure 1 shows the probability plot charts for the (base 10) logarithms of the observed and 

predicted concentrations in the different exposure media. On these charts, concentrations in 

the y-axis are represented against the cumulative probability expressed as the number of 

standard deviation from the geometric mean. For blood lead, figure 1e shows the 

concentrations calculated by the integrated model and those predicted with the new version of 

IEUBK from the measurements performed in the samples of surface soil, fruit and vegetables 

collected in the village. 

The observed values in air, ground soil, exposed produce and blood lead tend to follow 

lognormal distributions. However, concentrations above 500 mg/kg in the ground soil deviate 

from a lognormal distribution (these values correspond to a small area close to the facility 

and without dwelling). The distributions of the calculated concentrations in air and ground 

soil also follow lognormal distributions, whereas the distributions of the predicted 

concentrations for the protected produce, the exposed produce and in particular for the blood 

lead are characterized by two different slopes, indicating bimodal distributions.  

Except for the exposed produce, the median values predicted by the integrated model are in 

good agreement with the observed medians. The predicted median-to-observed median ratios 

are between 0.5 and 1.3 for these media. But for the exposed produce, the ratio is equal to 18.  

Regarding distributions, the observed data for ground soil are well captured until 500 mg/kg. 

The ranges of the observed and predicted values for the air concentrations are close and the 

two distributions are quite similar. But for protected produce, the distribution of the observed 

data is underestimated and above all the distribution of the observed concentrations for 

exposed produce is overestimated. For blood lead, the variability of the calculated 

concentrations is higher than that of the observed concentrations. In the case of 

concentrations predicted from the measurements performed in the exposure media, blood lead 

concentrations are underestimated up to the 90th percentile, then they are overestimated. The 
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values predicted from the integrated model are higher and the difference between the two 

distributions of calculated concentrations increased with percentiles. 

According to figure 2, even though emissions are primarily to air, inhalation of smelter 

emissions is not a major exposure pathway, because most of the lead emitted to air deposits 

to soil and from there is transferred to the children by various ingestion pathways.  

When blood lead level is predicted from the exposure media concentrations, soil ingestion 

appears as the predominant pathway in the upper percentiles of the distribution of the 

predicted blood lead concentrations, as in former studies conducted near smelters (Roels 

1980, Gulson 1994, Landrigan 1996). However, when blood lead level is calculated by the 

integrated model, the ingestion of exposed produce appears as the main pathway in the last 

quarter of the blood lead distribution. Therefore, the overestimation of the exposure produce 

concentrations by the integrated model contributes to the overestimation of the upper part of 

the distribution of blood lead concentrations calculated by this model.  

Analysis of the contributions to exposed produce contamination showed that in the first part 

of the distribution, transfer from air and from surface soil to plants are higher than transfer 

from root-soil, and then the situation is reversed. In order to understand the reasons for the 

overestimation of the exposed produce concentrations, we carried out a sensitivity analysis 

with Crystal Ball. The parameters with the highest contributions to the variance are listed in 

Table 3 in descending order.  

The distributions of the first two parameters with the highest sensitivity (particle-water 

partition coefficient and root-soil concentration) were defined by taking into account specific 

data from the studied site. The third parameter is the leaf wet density (rho_leaf). The default 

value, which was used in the computations, is equal to 820 kg/m3. With a volume fraction of 

water in leaf (beta_leaf) equal to 0.5, as provided in CalTOX, we get a value of 0.61 for the 

mass water fraction (0.5 x 1000 / 820), whereas the data for the exposed produce (leafy 

vegetables) collected in the gardens ranged from 0.77 to 0.98. So, we determined a new value 

for the leaf wet density on the basis of the mean of the leaf mass water fraction measured in 

the collected samples of exposed produce (0.91). We found a value equal to 550 kg/m3. It 

remains in accordance with the typical values used in models for leaf wet density, which are 

comprised between 500 and 900 kg/m3 (Riederer 1990, Paterson et al. 1991, Bacci et al. 

1992, Trapp and McFarlane 1994, Maccrady and Maggard 1995). 
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As a result, the distribution obtained for the exposed produce concentrations (figure 3a, curve 

3) is closer to that of the observed concentrations. The predicted concentrations were divided 

nearly by a factor 2, except at the lower tail of the distribution. The air, soil and protected 

concentration distributions were not altered by this change, but the variance in the predicted 

blood-lead concentrations (calculated by the integrated model from the predicted 

concentrations in produce) was reduced (figure 3b, curve 3).  

For the other parameters pointed out in the sensitivity analysis, we found no new data 

justifying any modifications of the default values and significantly improving the prediction 

of the exposed produce concentrations. 

But, we needed to consider that fruits and vegetables had been washed before the analyses 

and recognized that the impact of washing is not considered in the model. Unfortunately, the 

extent to which such a treatment reduces the contribution of air deposition and rain-splash to 

fruit and vegetables contamination is not well known. In our model, if the contributions of 

both these pathways are divided arbitrarily by ten, it appears clearly that the lower part of the 

predicted distribution (figure 3a, curve 4) is closer to that of the observed concentrations data. 

That means that the variability of the measurements is then captured better by the model. The 

model over-predicts the concentration in exposed fruits and vegetables by a factor 4 at the 

median, under these assumptions. The distribution of the blood lead concentrations predicted 

from the integrated model is then very close to that predicted by the new version of IEUBK 

from the exposure media measurements (figure 3b, curves 4 and 5). 

Nevertheless, these two distributions still deviate from the distribution of the observed blood 

lead at the upper percentiles and according to the integrated model, the ingestion of 

homegown plants remains the main contributor to the blood lead level above the 90th 

percentile. This is not in accordance with the result of the univariate analysis of observed data 

showing a higher mean of blood lead concentration for no consumers of homegrown plants 

(m=65 µg/l, n=46) than for consumers (m=45 µg/l, n=32), even if for the group of 

homegrown plant consumers, the blood lead level increases with the fraction of homegrown 

plants in the diet. The discrepancy between observed and predicted data may be due to the 

fact that in the sample of children tested, those with the highest consumption of kitchen 

garden foods were those living the farthest away from the facility, thereby with the lowest 

lead concentrations in plants. In other words, the actual consumption of home-grown produce 

in the village and its contribution to blood lead level at the upper percentiles is overestimated 
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by the model, which assumes a homogeneous distribution of the home-grown produce 

consumptions within the village. 

Model B 

The results of model B are provided in Figure 4 for nine children with one or two possible 

housing locations. We can see that the measured blood lead levels are between the 5th and the 

95th percentiles of the model results, with the exception of child 43. The measured blood-lead 

levels correspond to various percentiles of the distribution given by the model, going from 

the 25th to the 88th percentile according to the different children. Measured values of blood 

lead above the predicted median ratios are between 0.7 and 1.7 (excluding the results 

corresponding to child 43). 

Model B was able to capture the blood-lead-level ranges for the various conditions tested, 

except for child 43. The discrepancy between the model output and the blood lead level 

measured for this child may be explained by the fact that this child lived in an old house built 

before the ban of lead for interior paint. The univariate analysis of the data of the child 

biomonitoring and of the exposure survey showed a higher mean of blood lead concentration 

for children living in houses built before 1948 than for children living in more recent houses 

(DDASS 2002). But, this exposure pathway is not taken into account by the model. 

It has to be noted that using either the Thompson et al. (1991) or Stanek et al. (2000, 2001) 

distributions for soil ingestion, instead of a distribution centered on the value used to calibrate 

IEUBK for soil ingestion, results in lower estimates of blood lead concentrations, especially 

when the soil ingestion is a significant contributor to overall exposure. For example soil 

ingestion dominates when the children consume few or no homegrown foods, and when the 

soil lead concentration is high. In the sub-sample tested here, the geometric mean of the 

measured median above the calculated value ratio would increase from 1.1 to 1.3, if the 

distribution used for the quantity of soil ingested was replaced by Thompson et al.’s 

distribution and it would reach a higher value with Stanek et al.’s distribution. 

Many studies showed a correlation between blood lead level and soil lead (Xintaras 1992, 

Landrigan 1996, Mielke et al 1998). However, for instance, for child 71, who did not 

consume kitchen garden plants and who lived close to the facility, model B indicates that 

exposure due to ingestion of no local food is slightly higher than exposure due to soil 

ingestion. This is certainly due to the fact that soil lead concentration at the location of his 
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house is not high (200-230 mg/kg) compared to values measured in these studies. For child 

28, who ate a large amount of home-grown plants and lived relatively far from the facility, 

the ingestion of homegrown produce appears as the largest contributor to the blood lead level. 

Wilhem et al. (2005), who studied the dietary intake of lead by two groups of children living 

in an industrial region, found no difference between those eating a large part of produce from 

the families own vegetable garden and those consuming exclusively food from the 

supermarket. But in this case, comparison was made at a region scale without an identified 

local source of lead. Here, measures of concentrations in plants from child 28’s garden would 

be necessary to confirm the role played by the ingestion of homegrown plants. 

The uncertainties in the modeled blood lead predictions for model B are reflected by the 

ratios of the 95th percentile to the 5th percentile, which are between 2.6 and 4.9. The widest 

90% interval is given for child 28. In this case, the root soil concentration is the highest 

contributor to the variance. This high contribution is due to a lack of precision in the 

estimation of the root soil concentration in the child’s living area. Increasing the sampling 

efforts in soils of the farthest areas of the village could permit the reduction of the overall 

uncertainty. Nevertheless, model B is able to predict blood lead distributions with lower 

variance than model A (the ratio of the 95th percentile to the 5th percentile is equal to 10.2 

with model A). Indeed, model A has to integrate inter-individual variability in the input 

distributions, while model B took it into account by a better description of the influence of 

the distribution of lead deposition and individual characteristics. 

Limitations of the comparison between predicted data and observed data 

Finally, we acknowledge that the exercise of comparison made with both models may be 

limited by the quality of data used to perform it.  

Soil lead concentration appeared as the most sensitive parameter for the blood lead 

predictions performed. However, it was measured in bulk soil and not in the finest particle 

fraction, more likely representative of lead concentration in soil ingested by children. 

Campaigns for soil lead and blood lead concentrations were not conducted at the same time. 

(so, there is a possibility that soil was moved in some areas of the village between the two 

campaigns) and soil lead was not measured in children’s garden soil, but estimated by a 

geostatistical study. Air emissions used in model A were also estimated from indirect 

methods. 
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On the other hand, the lack of measurement data in the village for tapwater and lead 

bioavailability, which is usually recognized as a determining factor for estimating blood lead 

level (Mushak 1998), should not represent a major fault. For drinking water, the analysis of 

observed data showed that there is no significant difference between blood lead level of 

children drinking tapwater and those drinking bottled water. Lead bioavailability is not either 

a very sensitive parameter in the previous calculations. The absolute lead bioavailability and 

the relative bioavailability of soil lead together contribute to 3% of variance in model A and 

to 7% in model B at the maximum. 

CONCLUSIONS 

Both models, built for estimating human health risks linked to future emissions of facilities, 

may provide useful insight regarding source-to-dose relationships for the exposure 

population. Model A may be used to address general trends and model B is more focused on 

capturing individual exposures. In considering the results presented above, there is an issue 

that cuts across our evaluation of the individual models and data.  In this process, we 

recognized that not only did we gain insight into the two models, but by making a systematic 

comparison of two models with a specific case study, we gained important insights about lead 

exposure in these communities that could not be obtained from either model or the 

environmental/biomonitoring data used in isolation.  Thus we conclude that using the two 

models together with population and site-specific measurements of blood lead and 

environmental conditions provides for this population’s lead exposure patterns a level of 

understanding that could not be achieved with either model alone or with just the blood 

surveillance measurements. 

Model A provides an ability to capture the distributions of lead in the media and the blood 

lead concentrations at a local scale. It offers the opportunity to identify the potential pathways 

of concern and to characterize also the distribution of the exposure level. From the initial 

results of the model, mainly used with default values, the information from the sensitivity 

analysis and the pathway contributions evaluation help to identify the parameter 

improvements needed to calibrate the model to this case. However, predicted concentrations 

in exposed vegetables may be a potential source of overestimation of blood lead level. 

Model B provides outputs that can be targeted to specific areas and exposure conditions. It 

was set up to answer some questions, such as “in which zones or from which distance may 

the consumption of home-grown produce raise a health concern ?” Because of this feature, 
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model B can predict blood lead distributions with lower variance than model A. Precision of 

assessment is important for discriminating those situations that require management measures 

from those which do not, especially if the risk management threshold is low. Although, the 

results provided by model B, for contrasting exposure conditions, are in accordance with the 

measurements (apart from a case that may involve an exposure pathway that is not considered 

in the model), the low number of cases tested here does not enable to conclude on the 

performances of model B at the moment. 
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Table 1: Cases investigated with the model B (because of uncertainty in the location of some 

children’s houses, there are two entries for some children based on two different assumptions 

for soil concentrations and lead deposition around their houses) 

child number 

identification 

age 

(month) 

blood lead 

(µg/l) 

distance to 

the stacks 

(m) 

% home-

grown  

fruit 

% of home-

grown  

vegetables 

surface soil lead 

concentration in the 

location of the child’s 

home (mg/kg) 

48 33 67.1 250 0 50 173 

28 47 83.1 900 75 75 96 

28 47 83.1 900 75 75 84 

27 74 41.5 900 62.5 75 96 

27 74 41.5 900 62.5 75 84 

41 52 31.9 450 10 20 112 

41 52 31.9 450 10 20 103 

71 65 44.7 150 0 0 203 

71 65 44.7 150 0 0 227 

90 37 44.7 300 0 0 261 

90 37 44.7 300 0 0 174 

97 81 22.3 1000 0 0 66 

43 21 108.7 450 0 0 112 

43 21 108.7 450 0 0 103 

50 71 99.1 200 0 0 493 
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Table 2: Distributions assigned to environmental and chemical parameters of model B 
Parameters Distributions References 

Fraction of wet deposition 
that adheres to plant surfaces 

(-) 

U (0.15, 1)a GRNC 2002, US EPA 2005 

Deposition velocity of 
particles (m/s) 

CUMb   
  perc.c 0: 3 E-4            perc. 84: 3 E-2 
  perc. 16: 1 E-3          perc. 100: 3 E-1 
  perc. 50: 8 E-3 

US DOe 2003b, c 

Atmospheric mass loading 
of particles (kg/m3)  

T (2.5 E-8, 1.2 E-7, 2.0 E-7) ECETOC 1992, US DOe 
2003b, c 

Yield of crops (kg/m2) 
Leafy vegetables U (0.1, 0.5) GRNC 2002, US DOe 2004 
Fruiting vegetables  U (0.1, 0.3) US DOe 2004 
Fruits U (0.2, 0.5) GCNC 2002, US DOe 2004 

Plant surface loss coefficient (year-1) 
Leafy vegetables T (11, 26, 51)d GRNC 2002 
Fruiting vegetables  and 
fruits 

T (8.4, 18, 51) US DOe 2004 

Length of plant exposure to deposition (year) 
Leafy vegetables T (0.12, 0.21, 0.58) 
Fruiting vegetables  and 
fruits 

T (0.16, 0.25, 0.41) 
GCNC 2002, GRNC 2002, 

US EPA 2005 

Interception fraction of the edible portion of crops (-) 
Leafy vegetables T (0.10, 0.20, 0.50) Baes 1984, GCNC 2002, 

GRNC 2002. US EPA 2005 
Fruiting vegetables  T (0.03, 0.15, 0.15) 
Fruits T (0.03, 0.10, 0.10) 

Baes 1984, US EPA 2005 
 

Dry matter of plants (%) 
Leafy vegetables T (0.05, 0.07, 0.12) 
Fruiting vegetables  T (0.04, 0.07, 0.10) 
Fruits T (0.10, 0.15, 0.18) 
Root-vegetables T (0.12, 0.20, 0.22) 

Baes 1984. US DOe 2004. 
APRIFEL 2008 

Soil to plant transfer coefficients (kg dry matter / kg dry matter) 
Leafy vegetables LN (3.0 E-2, 4.6 E-2, 9.6 E-4, 2.8 E-1)e 
Fruiting vegetables  and 
fruits 

LN (4.2 E-3, 3.1 E-3 , 6.1 E-4, 1.9 E-2) 

Root-vegetables LN (5.7 E-3, 7.3 E-3 , 2.7 E-4, 4.5 E-2) 

Tremel-Schaub and Feix 
2005, Zupan et al. 1995 

 

a U (x1, x2) specifies a  uniform distribution with minimum x1 and maximum x2.  
b CUM stands for cumulative distribution. 
c perc. stands for percentile. 
d T (x1, x2, x3) specifies a triangular distribution with minimum x1, mode x2 and maximum x3. 
e LN (x1, x2, x3, x4) specifies a lognormal distribution with mean x1, standard deviation x2, lower 
truncation limit x3 and upper truncation limit x4.  
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Table 3: Input parameters with the highest sensitivity on exposure produce concentrations in 
model A 
Parameters  Symbols  Rank correlation coefficients between the 

input parameter and exposure produce 

concentration 

 

Particle-water partition 

coefficient 

Kd -0.44 

Concentration in root-zone soil Cs 0.41 

Leaf wet density rho_leaf 0.37 

Primary production dry 

vegetation 

veg_prod 0.31 

Rainsplash rainsplash 0.21 

Leaf surface erosion half-life Thalf_le 0.14 

Stem wet density rho_stem -0.12 

Annual average precipitation rain 0.11 

Ambient environmental 

temperature 

Temp -0.09 

Land surface runoff runoff 0.09 
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Figure 1 : Distributions of the measured concentrations and of the concentrations calculated 
with model A in air (a), ground soil (b), exposed produce (c), protected produce (d) and blood 
lead (e) (for blood lead, concentrations were also predicted by IEUBK from measurements in 
the other media) 
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Figure 2: Contributions of the exposure routes to the lead uptake according to model A 
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Figure 3: Distributions of the measured concentrations and of the concentrations calculated in 

exposed produce (a) and blood lead (b) before and after correcting the value of leaf wet 

density in model A  
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Figure 4: Comparison of the calculated and observed blood lead concentrations for the 

subsample of tested children (because of uncertainty in the location of some children’s 

houses, there are two entries for some children based on two different assumptions for soil 

concentrations and atmospheric deposition around their houses) – the error bars show the 

range (from the 5th  to the 95th percentile) of calculated concentrations with model B 
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