Skip to main content
Download PDF
- Main
Accelerated high‐bandwidth MR spectroscopic imaging using compressed sensing
Published Web Location
https://doi.org/10.1002/mrm.26272Abstract
Purpose
To develop a compressed sensing (CS) acceleration method with a high spectral bandwidth exploiting the spatial-spectral sparsity of MR spectroscopic imaging (MRSI).Methods
Accelerations were achieved using blip gradients during the readout to perform nonoverlapped and stochastically delayed random walks in kx -ky -t space, combined with block-Hankel matrix completion for efficient reconstruction. Both retrospective and prospective CS accelerations were applied to (13) C MRSI experiments, including in vivo rodent brain and liver studies with administrations of hyperpolarized [1-(13) C] pyruvate at 7.0 Tesla (T) and [2-(13) C] dihydroxyacetone at 3.0 T, respectively.Results
In retrospective undersampling experiments using in vivo 7.0 T data, the proposed method preserved spectral, spatial, and dynamic fidelities with R(2) ≥ 0.96 and ≥ 0.87 for pyruvate and lactate signals, respectively, 750-Hz spectral separation, and up to 6.6-fold accelerations. In prospective in vivo experiments, with 3.8-fold acceleration, the proposed method exhibited excellent spatial localization of metabolites and peak recovery for pyruvate and lactate at 7.0 T as well as for dihydroxyacetone and its metabolic products with a 4.5-kHz spectral span (140 ppm at 3.0 T).Conclusions
This study demonstrated the feasibility of a new CS approach to accelerate high spectral bandwidth MRSI experiments. Magn Reson Med 76:369-379, 2016. © 2016 Wiley Periodicals, Inc.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%