Skip to main content
eScholarship
Open Access Publications from the University of California

Membrane lipid order of human red blood cells is altered by physiological levels of hydrostatic pressure

  • Author(s): Barshtein, G
  • Bergelson, L
  • Dagan, A
  • Gratton, E
  • Yedgar, S
  • et al.
Creative Commons Attribution 4.0 International Public License
Abstract

The effect of hydrostatic pressure at levels applied in diving or hyperbaric treatment (thus considered 'physiological') on the order of lipid domains in human red blood cell (RBC) membrane was studied. Membrane order was determined by measuring 1) the fluorescence anisotropy (FAn) of lipid probes, 2) the resonance energy transfer from tryptophan to lipid probes, and 3) spectral shifts in Laurdan fluorescence emission. It was found that the application of mild pressure (< 15 atm) 1) increased, selectively, the FAn of lipid probes that monitor the membrane lipid core, 2) increased the tryptophan FAn, 3) increased the resonance energy transfer from tryptophan to lipid probes residing in the lipid core, and 4) induced changes in the Laurdan fluorescence spectrum, which corresponded to reduced membrane hydration. It is proposed that the application of pressure of several atmospheres increases the phase order of membrane lipid domains, particularly in the proximity of proteins. Because the membrane lipid order ('fluidity') of RBCs plays an important role in their cellular and rheological functions, the pressure-induced alterations of the RBC membrane might be pertinent to microcirculatory disorders observed in humans subjected to elevated pressure.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View