Skip to main content
eScholarship
Open Access Publications from the University of California

Time-, frequency-, and wavevector-resolved x-ray diffraction from single molecules

  • Author(s): Bennett, K
  • Biggs, JD
  • Zhang, Y
  • Dorfman, KE
  • Mukamel, S
  • et al.

Published Web Location

https://doi.org/10.1063/1.4878377
Abstract

Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broadband X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and proteins. © 2014 AIP Publishing LLC.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View