Skip to main content
eScholarship
Open Access Publications from the University of California

Mobilization of aged and biolabile soil carbon by tropical deforestation.

  • Author(s): Drake, Travis W
  • Van Oost, Kristof
  • Barthel, Matti
  • Bauters, Marijn
  • Hoyt, Alison M
  • Podgorski, David C
  • Six, Johan
  • Boeckx, Pascal
  • Trumbore, Susan E
  • Ntaboba, Landry Cizungu
  • Spencer, Robert GM
  • et al.
Abstract

In the mostly pristine Congo Basin, agricultural land-use change has intensified in recent years. One potential and understudied consequence of this deforestation and conversion to agriculture is the mobilization and loss of organic matter from soils to rivers as dissolved organic matter. Here, we quantify and characterize dissolved organic matter sampled from 19 catchments of varying deforestation extent near Lake Kivu over a two-week period during the wet season. Dissolved organic carbon from deforested, agriculturally-dominated catchments was older (14C age: ~1.5kyr) and more biolabile than from pristine forest catchments. Ultrahigh-resolution mass spectrometry revealed that this aged organic matter from deforested catchments was energy-rich and chemodiverse, with higher proportions of nitrogen- and sulfur-containing formulae. Given the molecular composition and biolability, we suggest that organic matter from deforested landscapes is preferentially respired upon disturbance, resulting in elevated in-stream concentrations of carbon dioxide. We estimate that while deforestation reduces the overall flux of dissolved organic carbon by ~56%, it does not significantly change the yield of biolabile dissolved organic carbon. Ultimately, the exposure of deeper soil horizons through deforestation and agricultural expansion releases old, previously stable, and biolabile soil organic carbon into the modern carbon cycle via the aquatic pathway.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View