Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

A situational awareness Bayesian network approach for accurate and credible personalized adaptive radiotherapy outcomes prediction in lung cancer patients

Abstract

Purpose

A situational awareness Bayesian network (SA-BN) approach is developed to improve physicians' trust in the prediction of radiation outcomes and evaluate its performance for personalized adaptive radiotherapy (pART).

Methods

118 non-small-cell lung cancer patients with their biophysical features were employed for discovery (n = 68) and validation (n = 50) of radiation outcomes prediction modeling. Patients' important characteristics identified by radiation experts to predict individual's tumor local control (LC) or radiation pneumonitis with grade ≥ 2 (RP2) were incorporated as expert knowledge (EK). Besides generating an EK-based naïve BN (EK-NBN), an SA-BN was developed by incorporating the EK features into pure data-driven BN (PD-BN) methods to improve the credibility of LC or / and RP2 prediction. After using area under the free-response receiver operating characteristics curve (AU-FROC) to assess the joint prediction of these outcomes, their prediction performances were compared with a regression approach based on the expert yielded estimates (EYE) penalty and its variants.

Results

In addition to improving the credibility of radiation outcomes prediction, the SA-BN approach outperformed the EYE penalty and its variants in terms of the joint prediction of LC and RP2. The value of AU-FROC improves from 0.70 (95% CI: 0.54-0.76) using EK-NBN, to 0.75 (0.65-0.82) using a variant of EYE penalty, to 0.83 (0.75-0.93) using PD-BN and 0.83 (0.77-0.90) using SA-BN; with similar trends in the validation cohort.

Conclusions

The SA-BN approach can provide an accurate and credible human-machine interface to gain physicians' trust in clinical decision-making, which has the potential to be an important component of pART.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View