Skip to main content
Open Access Publications from the University of California

Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats.

  • Author(s): DiPatrizio, Nicholas V
  • Joslin, Alexandra
  • Jung, Kwang-Mook
  • Piomelli, Daniele
  • et al.

Dietary fat exerts a potent stimulatory effect on feeding. This effect is mediated, at least in part, by a cephalic mechanism that involves recruitment of the vagus nerve and subsequent activation of endocannabinoid signaling in the gut. Here, we used a sham-feeding protocol in rats to identify fatty-acid constituents of dietary fat that might be responsible for triggering small-intestinal endocannabinoid signaling. Sham feeding rats with a corn oil emulsion increased endocannabinoid levels in jejunum, relative to animals that received either mineral oil (which contains no fatty acids) or no oil. Sham-feeding emulsions containing oleic acid (18:1) or linoleic acid (18:2) caused, on average, a nearly 2-fold accumulation of jejunal endocannabinoids, whereas emulsions containing stearic acid (18:0) or linolenic acid (18:3) had no such effect. In a 2-bottle-choice sham-feeding test, rats displayed strong preference for emulsions containing 18:2, which was blocked by pretreatment with the peripherally restricted CB1 cannabinoid receptor antagonists, AM6546 and URB447. Our results suggest that oral exposure to the monoenoic and dienoic fatty acid component of dietary fat selectively initiates endocannabinoid mobilization in the gut, and that this local signaling event is essential for fat preference.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View