- Main
A kinase-independent biological activity for insulin growth factor-1 receptor (IGF-1R) : implications for inhibition of the IGF-1R signal
Published Web Location
https://doi.org/10.18632/oncotarget.886Abstract
It has been demonstrated that epidermal growth factor receptor (EGFR) can have kinase independent activity. EGFR kinase-independent function maintains intracellular glucose levels via sodium glucose transporter protein 1 (SGLT1) and supports cell survival. It is plausible that this phenomenon can apply to other receptor tyrosine kinases. We found that transfection of insulin-like growth factor receptor (IGF-1R) siRNA into HEK293 (human embryonic kidney) and MCF7 (metastatic breast cancer) cells result in decreased intracellular glucose levels, whereas treatment with an IGF-1R tyrosine kinase inhibitor OSI-906 did not affect intracellular glucose levels. In addition, IGF-1R interacted with SGLT1 in a manner similar to that previously reported with EGFR. The combination of IGF-1R siRNA and OSI-906 resulted in decreased viability of HEK293 and MCF7 cell lines compared to either agent alone. Collectively, these experiments suggest that IGF-1R, has kinase-independent biologic functions and provide a rationale for combining anti-IGF-1R antibodies or siRNA and IGF-1R small molecule inhibitors.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-