Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Frequency-Based Analysis of Gramicidin A Nanopores Enabling Detection of Small Molecules with Picomolar Sensitivity

Abstract

Methods to detect low concentrations of small molecules are useful for a wide range of analytical problems including the development of clinical assays, the study of complex biological systems, and the detection of biological warfare agents. This paper describes a semisynthetic ion channel platform capable of detecting small molecule analytes with picomolar sensitivity. Our methodology exploits the transient nature of ion channels formed from gramicidin A (gA) nanopores and the frequency of observed single channel events as a function of concentration of free gA molecules that reversibly dimerize in a bilayer membrane. We initially use a protein (here, a monoclonal antibody) to sequester the ion channel activity of a C-terminally modified gA derivative. When a small molecule analyte is introduced to the electrical recording medium, it competitively binds to the protein and liberates the gA derivative, restoring its single ion channel activity. We found that monitoring the frequency of gA channel events makes it possible to detect picomolar concentrations of small molecule in solution. In part, due to the digital on/off nature of frequency-based analysis, this approach is 103 times more sensitive than measuring macroscopic membrane ion flux through gA channels as a basis for detection. This novel methodology, therefore, significantly improves the limit of detection of nanopore-based sensors for small molecule analytes, which has the potential for incorporation into miniaturized and low cost devices that could complement current established assays.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View