- Main
A Dual-Phase Power Allocation Scheme for Multicarrier Relay Systems With Direct Link
Abstract
We present optimization algorithms for source and relay power allocations in a multicarrier relay system with direct link, where the source power is allowed to transmit in both phases in a two-phase relay scheme. We show that there is a significant benefit to the system capacity by allowing the source power to be distributed over both phases. Specifically, we consider the joint optimization of source and relay power to minimize a general cost function. The joint optimization problem is non-convex and the complexity of finding the optimal solution is extremely high. Using the alternating optimization (AO) method, the joint problem is decomposed into a convex source power allocation problem and a non-convex relay power allocation problem. By exploiting the specific structure of the problem, we present efficient algorithms that yield the exact optimal solutions for both source and (non-convex) relay power allocation problems. Then we show that the overall AO algorithm converges to a stationary point of the joint problem. Moreover, the proposed AO algorithm is asymptotically optimal for large relay transmit power or large source-relay channel gain. Finally, simulations show that the proposed AO algorithm achieves significant gain over various baselines.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-