- Main
Modulating Integrin αIIbβ3 Activity through Mutagenesis of Allosterically Regulated Intersubunit Contacts
Published Web Location
https://doi.org/10.1021/acs.biochem.9b00430Abstract
Integrin αIIbβ3, a transmembrane heterodimer, mediates platelet aggregation when it switches from an inactive to an active ligand-binding conformation following platelet stimulation. Central to regulating αIIbβ3 activity is the interaction between the αIIb and β3 extracellular stalks, which form a tight heterodimer in the inactive state and dissociate in the active state. Here, we demonstrate that alanine replacements of sensitive positions in the heterodimer stalk interface destabilize the inactive conformation sufficiently to cause constitutive αIIbβ3 activation. To determine the structural basis for this effect, we performed a structural bioinformatics analysis and found that perturbing intersubunit contacts with favorable interaction geometry through substitutions to alanine quantitatively accounted for the degree of constitutive αIIbβ3 activation. This mutational study directly assesses the relationship between favorable interaction geometry at mutation-sensitive positions and the functional activity of those mutants, giving rise to a simple model that highlights the importance of interaction geometry in contributing to the stability between protein-protein interactions.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-