Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Effects of carbonaceous nanomaterials on soil-grown soybeans under combined heat and insect stresses

Published Web Location

https://doi.org/10.1071/en19047
Abstract

Because carbonaceous nanomaterials (CNMs) are expected to enter soils, the exposure implications to crop plants and plant-microbe interactions should be understood. Most investigations have been under ideal growth conditions, yet crops commonly experience abiotic and biotic stresses. Little is known how co-exposure to these environmental stresses and CNMs would cause combined effects on plants. We investigated the effects of 1000 mg kg-1 multiwalled carbon nanotubes (CNTs), graphene nanoplatelets (GNPs) and industrial carbon black (CB) on soybeans grown to the bean production stage in soil. Following seed sowing, plants became stressed by heat and infested with an insect (thrips). Consequently, all plants had similarly stunted growth, leaf damage, reduced final biomasses and fewer root nodules compared with healthy control soybeans previously grown without heat and thrips stresses. Thus, CNMs did not significantly influence the growth and yield of stressed soybeans, and the previously reported nodulation inhibition by CNMs was not specifically observed here. However, CNMs did significantly alter two leaf health indicators: the leaf chlorophyll a/b ratio, which was higher in the GNP treatment than in either the control (by 15 %) or CB treatment (by 14 %), and leaf lipid peroxidation, which was elevated in the CNT treatment compared with either the control (by 47 %) or GNP treatment (by 66 %). Overall, these results show that, while severe environmental stresses may impair plant production, CNMs (including CNTs and GNPs) in soil could additionally affect foliar health of an agriculturally important legume.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View