Skip to main content
eScholarship
Open Access Publications from the University of California

Mapping the deletion endpoints in individuals with 22q11.2 Deletion Syndrome by droplet digital PCR

  • Author(s): Hwang, VJ
  • Maar, D
  • Regan, J
  • Angkustsiri, K
  • Simon, TJ
  • Tassone, F
  • et al.
Abstract

© 2014 Hwang et al. Background: Chromosome 22q11.2 deletion syndrome (22q11DS) is the most common human microdeletion syndrome and is associated with many cognitive, neurological and psychiatric disorders. The majority of individuals have a 3 Mb deletion while others have a nested 1.5 Mb deletion, but rare atypical deletions have also been described. To date, a study using droplet digital PCR (ddPCR) has not been conducted to systematically map the chromosomal breakpoints in individuals with 22q11DS, which would provide important genotypic insight into the various phenotypes observed in this syndrome. Methods: This study uses ddPCR to assess copy number (CN) changes within the chromosome 22q11 deletion region and allows the mapping of the deletion endpoints. We used eight TaqMan assays interspersed throughout the deleted region of 22q11.2 to characterize the deleted region of chromosome 22 in 80 individuals known to have 22q11DS by FISH. Ten EvaGreen assays were used for finer mapping of the six identified individuals with 22q11DS atypical deletions and covering different regions of chromosome 22. Results: ddPCR provided non-ambiguous CN measurements across the region, confirmed the presence of the deletion in the individuals screened, and led to the identification of five differently sized and located deletions. The majority of the participants (n = 74) had the large 3 Mb deletions, whereas three had the smaller 1.5 Mb deletions, and the remaining three had an interstitial deletion of different size. Conclusions: The lower cost, rapid execution and high reliability and specificity provided by ddPCR for CN measurements in the 22q11 region constitutes a significant improvement over the variable CN values generated by other technologies. The ability of the ddPCR approach, to provide a high resolution mapping of deletion endpoints may result in the identification of genes that are haplo-insufficient and play a role in the pathogenesis of 22q11DS. Finally, this methodology can be applied to the characterization of other microdeletions throughout the genome.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View