Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Error Processing and Inhibitory Control in Obsessive-Compulsive Disorder: A Meta-analysis Using Statistical Parametric Maps

Abstract

Background

Error processing and inhibitory control enable the adjustment of behaviors to meet task demands. Functional magnetic resonance imaging studies report brain activation abnormalities in patients with obsessive-compulsive disorder (OCD) during both processes. However, conclusions are limited by inconsistencies in the literature and small sample sizes. Therefore, the aim here was to perform a meta-analysis of the existing literature using unthresholded statistical maps from previous studies.

Methods

A voxelwise seed-based d mapping meta-analysis was performed using t-maps from studies comparing patients with OCD and healthy control subjects (HCs) during error processing and inhibitory control. For the error processing analysis, 239 patients with OCD (120 male; 79 medicated) and 229 HCs (129 male) were included, while the inhibitory control analysis included 245 patients with OCD (120 male; 91 medicated) and 239 HCs (135 male).

Results

Patients with OCD, relative to HCs, showed longer inhibitory control reaction time (standardized mean difference = 0.20, p = .03, 95% confidence interval = 0.016, 0.393) and more inhibitory control errors (standardized mean difference = 0.22, p = .02, 95% confidence interval = 0.039, 0.399). In the brain, patients showed hyperactivation in the bilateral dorsal anterior cingulate cortex, supplementary motor area, and pre-supplementary motor area as well as right anterior insula/frontal operculum and anterior lateral prefrontal cortex during error processing but showed hypoactivation during inhibitory control in the rostral and ventral anterior cingulate cortices and bilateral thalamus/caudate, as well as the right anterior insula/frontal operculum, supramarginal gyrus, and medial orbitofrontal cortex (all seed-based d mapping z value >2, p < .001).

Conclusions

A hyperactive error processing mechanism in conjunction with impairments in implementing inhibitory control may underlie deficits in stopping unwanted compulsive behaviors in the disorder.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View