Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Sac1p mediates the adenosine triphosphate transport into yeast endoplasmic reticulum that is required for protein translocation.

Abstract

Protein translocation into the yeast endoplasmic reticulum requires the transport of ATP into the lumen of this organelle. Microsomal ATP transport activity was reconstituted into proteoliposomes to characterize and identify the transporter protein. A polypeptide was purified whose partial amino acid sequence demonstrated its identity to the product of the SAC1 gene. Accordingly, microsomal membranes isolated from strains harboring a deletion in the SAC1 gene (sac1 delta) were found to be deficient in ATP-transporting activity as well as severely compromised in their ability to translocate nascent prepro-alpha-factor and preprocarboxypeptidase Y. Proteins isolated from the microsomal membranes of a sac1 delta strain were incapable of stimulating ATP transport when reconstituted into the in vitro assay system. When immunopurified to homogeneity and incorporated into artificial lipid vesicles, Sac1p was shown to reconstitute ATP transport activity. Consistent with the requirement for ATP in the lumen of the ER to achieve the correct folding of secretory proteins, the sac1 delta strain was shown to have a severe defect in transport of procarboxypeptidase Y out of the ER and into the Golgi complex in vivo. The collective data indicate an intimate role for Sac1p in the transport of ATP into the ER lumen.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View