Properties of resonantly produced sterile neutrino dark matter subhaloes
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Properties of resonantly produced sterile neutrino dark matter subhaloes

Abstract

The anomalous 3.55 keV X-ray line recently detected towards a number of massive dark matter objects may be interpreted as the radiative decays of 7.1 keV mass sterile neutrino dark matter. Depending on its parameters, the sterile neutrino can range from cold to warm dark matter with small-scale suppression that differs in form from commonly-adopted thermal warm dark matter. Here, we numerically investigate the subhalo properties for 7.1 keV sterile neutrino dark matter produced via the resonant Shi-Fuller mechanism. Using accurate matter power spectra, we run cosmological zoom-in simulations of a Milky Way-sized halo and explore the abundance of massive subhalos, their radial distributions, and their internal structure. We also simulate the halo with thermal 2.0 keV warm dark matter for comparison and discuss quantitative differences. We find that the resonantly produced sterile neutrino model for the 3.55 keV line provides a good description of structures in the Local Group, including the number of satellite dwarf galaxies and their radial distribution, and largely mitigates the too-big-to-fail problem. Future searches for satellite galaxies by deep surveys, such as the Dark Energy Survey, Large Synoptic Survey Telescope, and Wide Field Infrared Survey Telescope, will be a strong direct test of warm dark matter scenarios.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View