Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Multi-Layer domain adaptation method for rolling bearing fault diagnosis

Abstract

In the past years, data-driven approaches such as deep learning have been widely applied on machinery signal processing to develop intelligent fault diagnosis systems. In real-world applications, domain shift problem usually occurs where the distribution of the labeled training data, denoted as source domain, is different from that of the unlabeled testing data, known as target domain. That results in serious diagnosis performance degradation. This paper proposes a novel domain adaptation method for rolling bearing fault diagnosis based on deep learning techniques. A deep convolutional neural network is used as the main architecture. The multi-kernel maximum mean discrepancies (MMD) between the two domains in multiple layers are minimized to adapt the learned representations from supervised learning in the source domain to be applied in the target domain. The domain-invariant features can be efficiently extracted in this way, and the cross-domain testing performance can be significantly improved. Experiments on two rolling bearing datasets are carried out to validate the effectiveness of the domain adaptation approach. Comparisons with other approaches and related works demonstrate the superiority of the proposed method. The experimental results of this study suggest the proposed domain adaptation method offers a new and promising tool for intelligent fault diagnosis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View