Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

A cell-centered, agent-based framework that enables flexible environment granularities

Published Web Location

http://www.tbiomed.com/content/13/1/4
No data is associated with this publication.
Abstract

Background

Mechanistic explanations of cell-level phenomena typically adopt an observer perspective. Explanations developed from a cell's perspective may offer new insights. Agent-based models lend themselves to model from an individual perspective, and existing agent-based models generally utilize a regular lattice-based environment. A framework which utilizes a cell's perspective in an off-lattice environment could improve the overall understanding of biological phenomena.

Results

We present an agent-based, discrete event framework, with a demonstrative focus on biomimetic agents. The framework was first developed in 2-dimensions and then extended, with a subset of behaviors, to 3-dimensions. The framework is expected to facilitate studies of more complex biological phenomena through exploitation of a dynamic Delaunay and Voronoi off-lattice environment. We used the framework to model biological cells and to specifically demonstrate basic biological cell behaviors in two- and three-dimensional space. Potential use cases are highlighted, suggesting the utility of the framework in various scenarios.

Conclusions

The framework presented in this manuscript expands on existing cell- and agent-centered methods by offering a new perspective in an off-lattice environment. As the demand for biomimetic models grows, the demand for new methods, such as the presented Delaunay and Voronoi framework, is expected to increase.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item