Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells

Published Web Location

https://doi.org/10.1038/nm.4147
Abstract

Mechanisms by which regulatory T (Treg) cells fail to control inflammation in asthma remain poorly understood. We show that a severe asthma-associated polymorphism in the gene encoding the interleukin (IL)-4 receptor alpha chain (Il4ra(R576)) promotes conversion of induced Treg (iTreg) cells toward a T helper 17 (TH17) cell fate. This skewing is mediated by the recruitment by IL-4Rα(R576) of the growth-factor-receptor-bound protein 2 (GRB2) adaptor protein, which drives IL-17 expression by activating a pathway that involves extracellular-signal-regulated kinase, IL-6 and the transcription factor STAT3. Treg cell-specific deletion of genes that regulate TH17 cell differentiation, including Il6ra and RAR-related orphan receptor gamma (Rorc), but not of Il4 or Il13, prevented exacerbated airway inflammation in mice expressing Il4ra(R576) (hereafter referred to as Il4ra(R576) mice). Furthermore, treatment of Il4ra(R576) mice with a neutralizing IL-6-specific antibody prevented iTreg cell reprogramming into TH17-like cells and protected against severe airway inflammation. These findings identify a previously unknown mechanism for the development of mixed TH2-TH17 cell inflammation in genetically prone individuals and point to interventions that stabilize iTreg cells as potentially effective therapeutic strategies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View