- Main
Biochemical and Spectroscopic Characterization of a Radical S‑Adenosyl‑l‑methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link
Published Web Location
https://doi.org/10.1021/acs.biochem.6b00145Abstract
Peptide-derived natural products are a class of metabolites that afford the producing organism a selective advantage over other organisms in their biological niche. While the polypeptide antibiotics produced by the nonribosomal polypeptide synthetases (NRPS) are the most widely recognized, the ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging group of natural products with diverse structures and biological functions. Both the NRPS derived peptides and the RiPPs undergo extensive post-translational modifications to produce structural diversity. Here we report the first characterization of the six cysteines in forty-five (SCIFF) [Haft, D. H. and Basu M. K. (2011) J. Bacteriol. 193, 2745-2755] peptide maturase Tte1186, which is a member of the radical S-adenosyl-l-methionine (SAM) superfamily. Tte1186 catalyzes the formation of a thioether cross-link in the peptide Tte1186a encoded by an orf located upstream of the maturase, under reducing conditions in the presence of SAM. Tte1186 contains three [4Fe-4S] clusters that are indispensable for thioether cross-link formation; however, only one cluster catalyzes the reductive cleavage of SAM. Mechanistic imperatives for the reaction catalyzed by the thioether forming radical SAM maturases will be discussed.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-