Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Regulated transport of signaling proteins from synapse to nucleus

Abstract

Synapse-to-nucleus communication is essential for neural development, plasticity, and repair. In addition to fast electrochemical signaling, neurons employ a slower mechanism of protein transport from synapse-to-nucleus. This mechanism provides potential advantages, including the encoding of spatial information. Many synaptonuclear signaling proteins are transported from the postsynaptic compartment to the nucleus in an activity-dependent manner. The phosphorylation state of two such proteins, CRTC1 and Jacob, is dependent on the stimulus type. While most studies have focused on postsynaptic synaptonuclear communication, a transcriptional co-repressor, CtBP1, was recently discovered to undergo activity-dependent translocation from the presynaptic compartment to the nucleus. Recent evidence indicates that synapse-to-nucleus communication could be cell type-specific, including the identification of a distinct mechanism of excitation-transcription coupling in inhibitory neurons.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View