- Main
Zeolite-Catalyzed Isobutene Amination: Mechanism and Kinetics
Published Web Location
https://doi.org/10.1021/acscatal.9b01799Abstract
Amination of isobutene with NH3 was investigated over Brønsted acidic zeolites at 1 atm and 453-483 K. To compare catalytic activities over different zeolites, the measured reaction rates are normalized by the number of active sites determined by tert-butylamine temperature-programmed desorption (TPD). Small- A nd medium-pore zeolites with one-dimensional channels exhibit low activity because of pore blockage by adsorbed tert-butylammonium ions. However, turnover frequencies and activation energies are not sensitive to framework identity, as long as the active site is accessible to isobutene and tert-butylamine. Kinetic measurements and FTIR spectroscopy reveal that the Brønsted acid sites in MFI are covered predominantly with tert-butylammonium ions under reaction conditions. The desorption of tert-butylamine is assisted by the concurrent adsorption of isobutene. DFT simulations show that at very low tert-butylamine partial pressures, for example, at the inlet to the reactor, tert-butylamine desorption is rate-limiting. However, at sufficiently high tert-butylamine partial pressures (>0.03 kPa), protonation of isobutene to the corresponding carbenium ion limits the rate of amination.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-