Skip to main content
eScholarship
Open Access Publications from the University of California

New Data and Methods for Estimating Regional Truck Movements

Published Web Location

https://doi.org/10.7922/G2JM27ZP
Abstract

This report describes how current methods of estimating truck traffic volumes from existing fixed roadway sensors could be improved by using tracking data collected from commercial truck fleets and other connected technology sources (e.g., onboard GPS-enabled navigation systems and smartphones supplied by third-party vendors). Using Caltrans District 1 in Northern California as an example, the study first reviews existing fixed-location data collection capabilities and highlights gaps in the ability to monitor truck movements. It then reviews emerging data sources and analyzes the analytical capabilities of StreetLight 2021, a commercial software package. The study then looks at the Sample Trip Count and uncalibrated Index values obtained from three weigh-in-motion (WIM) and twelve Traffic Census stations operated by Caltrans in District 1. The study suggests improvements to StreetLight’s “single-factor” calibration process which limits its ability to convert raw truck count data into accurate traffic volume estimates across an area, and suggests how improved truck-related calibration data can be extracted from the truck classification counts obtained from Caltrans’ WIM and Traffic Census stations. The report compares uncalibrated StreetLight Index values to observed truck counts to assess data quality and evaluates the impacts of considering alternate calibration data sets and analysis periods. Two test cases are presented to highlight issues with the single-factor calibration process. The report concludes that probe data analytical platforms such as StreetLight can be used to obtain rough estimates of truck volumes on roadway segments or to analyze routing patterns. The results further indicate that the accuracy of volume estimates depends heavily on the availability of sufficiently large samples of tracking data and stable and representative month-by-month calibration data across multiple reference locations.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View