Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Intertwined Magnetic and Nematic Orders in Semiconducting KFe0.8Ag1.2Te2

Abstract

Superconductivity in the iron pnictides emerges from metallic parent compounds exhibiting intertwined stripe-type magnetic order and nematic order, with itinerant electrons suggested to be essential for both. Here we use x-ray and neutron scattering to show that a similar intertwined state is realized in semiconducting KFe_{0.8}Ag_{1.2}Te_{2} (K_{5}Fe_{4}Ag_{6}Te_{10}) without itinerant electrons. We find that Fe atoms in KFe_{0.8}Ag_{1.2}Te_{2} form isolated 2×2 blocks, separated by nonmagnetic Ag atoms. Long-range magnetic order sets in below T_{N}≈35  K, with magnetic moments within the 2×2 Fe blocks ordering into the stripe-type configuration. A nematic order accompanies the magnetic transition, manifest as a structural distortion that breaks the fourfold rotational symmetry of the lattice. The nematic orders in KFe_{0.8}Ag_{1.2}Te_{2} and iron pnictide parent compounds are similar in magnitude and in how they relate to the magnetic order, indicating a common origin. Since KFe_{0.8}Ag_{1.2}Te_{2} is a semiconductor without itinerant electrons, this indicates that local-moment magnetic interactions are integral to its magnetic and nematic orders, and such interactions may play a key role in iron-based superconductivity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View