Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Automated treatment planning framework for brachytherapy of cervical cancer using 3D dose predictions.

Abstract

Objective. To lay the foundation for automated knowledge-based brachytherapy treatment planning using 3D dose estimations, we describe an optimization framework to convert brachytherapy dose distributions directly into dwell times (DTs).Approach. A dose rate kernelḋ(r,θ,φ)was produced by exporting 3D dose for one dwell position from the treatment planning system and normalizing by DT. By translating and rotating this kernel to each dwell position, scaling by DT and summing over all dwell positions, dose was computed (Dcalc). We used a Python-coded COBYLA optimizer to iteratively determine the DTs that minimize the mean squared error betweenDcalcand reference doseDref, computed using voxels withDref80%-120% of prescription. As validation of the optimization, we showed that the optimizer replicates clinical plans whenDref= clinical dose in 40 patients treated with tandem-and-ovoid (T&O) or tandem-and-ring (T&R) and 0-3 needles. Then we demonstrated automated planning in 10 T&O usingDref= dose predicted from a convolutional neural network developed in past work. Validation and automated plans were compared to clinical plans using mean absolute differences (MAD=1N∑n=1Nabsxn-xn) over all voxels (xn= Dose,N= #voxels) and DTs (xn= DT,N= #dwell positions), mean differences (MD) in organD2ccand high-risk CTV D90 over all patients (where positive indicates higher clinical dose), and mean Dice similarity coefficients (DSC) for 100% isodose contours.Main results. Validation plans agreed well with clinical plans (MADdose= 1.1%, MADDT= 4 s or 0.8% of total plan time,D2ccMD = -0.2% to 0.2% and D90 MD = -0.6%, DSC = 0.99). For automated plans, MADdose= 6.5% and MADDT= 10.3 s (2.1%). The slightly higher clinical metrics in automated plans (D2ccMD = -3.8% to 1.3% and D90 MD = -5.1%) were due to higher neural network dose predictions. The overall shape of the automated dose distributions were similar to clinical doses (DSC = 0.91).Significance. Automated planning with 3D dose predictions could provide significant time savings and standardize treatment planning across practitioners, regardless of experience.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View