- Main
Cortical Activity During Perception of Musical Rhythm: Comparing Musicians and Nonmusicians
Abstract
This study investigates the effects of musical training on brain activity to violations of rhythmic expectancies. We recorded behavioral and event-related brain potential (ERP) responses of musicians and non-musicians to discrepancies of rhythm between pairs of unfamiliar melodies based on Western classical rules. Rhythm deviations in the second melody involved prolongation of a note, thus creating a delay in the subsequent note; the duration of the second note was consequently shorter because the offset time was unchanged. In the first melody, on the other hand, the two notes were of equal duration. Musicians detected rhythm deviations significantly better than non-musicians. A negative auditory cortical potential in response to the omitted stimulus was observed at a latency of 150-250 ms from where the note should have been. There were no significant differences of amplitude or latency between musicians and non-musicians. In contrast, the N100 and P200 to the delayed note after the omission were significantly greater in amplitude in musicians compared to non-musicians especially in frontal and frontal-central areas. These findings indicate that long term musical training enhances brain cortical activities involved in processing temporal irregularities of unfamiliar melodies.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-