Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Mapping deforestation and secondary growth in Rondonia, Brazil, using imaging radar and thematic mapper data

Abstract

Excellent data on deforestation have been obtained in the tropics with the use of high-resolution optical sensors. Yet, several problems remain. Cloud cover creates data gaps that limit the possibility of complete and frequent assessments, and secondary growth is not well characterized. Active microwave sensors could complement these sensors because they operate independently of cloud cover and smoke and can detect differences in woody biomass and forest structure associated with various stages of forest clearing and regrowth. An example of comparison and synergy between the two techniques is discussed here. Polarimetric, C- (5.6 cm) and L-band (24 cm) frequency, radar data gathered in October 1994 by NASA's Spaceborne Imaging Radar C, on a test site southeast of the city of Porto Velho, in the state of Rondonia, Brazil, are analyzed in conjunction with one 1993 Landsat Thematic Mapper (TM) scene, a 9-year time series of Satellite pour l'observation de la Terre (SPOT) XS data, two Japan Earth Resources Satellite (JERS-1) radar images from 1994 and 1995, and a field visit conducted in 1995. The C-band radar data are found to be of limited utility for mapping deforestation. At L-band, multiple polarizations are required to obtain a reliable classification. The single polarization, L-band, single date, JERS-1 data underestimate the extent of deforestation, especially during the wet season. With multiple polarizations, six classes of land cover, including one level of regrowth, are mapped with 90% accuracy, but intermediate regrowth 5-8 years of age is not well separated from the forest. The Landsat TM data identify deforested areas better but provide less information on residual woody biomass levels. Combining the two classifications, seven classes of land cover including two levels of regrowth are mapped with 93% accuracy. The results show that the deforestation rate for 1994 was 1.7%. Large variations in residual woody biomass are detected among new clearings. Half of the total deforested land is in some stage of regrowth but most of it is less than 5 years old. Secondary growth is therefore a significant form or land use that is recleared quickly.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View