Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Machine learning models compared to existing criteria for noninvasive prediction of endoscopic retrograde cholangiopancreatography-confirmed choledocholithiasis

Abstract

Background and aims

Noninvasive predictors of choledocholithiasis have generally exhibited marginal performance characteristics. We aimed to identify noninvasive independent predictors of endoscopic retrograde cholangiopancreatography (ERCP)-confirmed choledocholithiasis and accordingly developed predictive machine learning models (MLMs).

Methods

Clinical data of consecutive patients undergoing first-ever ERCP for suspected choledocholithiasis from 2015-2019 were abstracted from a prospectively-maintained database. Multiple logistic regression was used to identify predictors of ERCP-confirmed choledocholithiasis. MLMs were then trained to predict ERCP-confirmed choledocholithiasis using pre-ERCP ultrasound (US) imaging only and separately using all available noninvasive imaging (US/CT/magnetic resonance cholangiopancreatography). The diagnostic performance of American Society for Gastrointestinal Endoscopy (ASGE) "high-likelihood" criteria was compared to MLMs.

Results

We identified 270 patients (mean age 46 years, 62.2% female, 73.7% Hispanic/Latino, 59% with noninvasive imaging positive for choledocholithiasis) with native papilla who underwent ERCP for suspected choledocholithiasis, of whom 230 (85.2%) were found to have ERCP-confirmed choledocholithiasis. Logistic regression identified choledocholithiasis on noninvasive imaging (odds ratio (OR) = 3.045, P = 0.004) and common bile duct (CBD) diameter on noninvasive imaging (OR=1.157, P = 0.011) as predictors of ERCP-confirmed choledocholithiasis. Among the various MLMs trained, the random forest-based MLM performed best; sensitivity was 61.4% and 77.3% and specificity was 100% and 75.0%, using US-only and using all available imaging, respectively. ASGE high-likelihood criteria demonstrated sensitivity of 90.9% and specificity of 25.0%; using cut-points achieving this specificity, MLMs achieved sensitivity up to 97.7%.

Conclusions

MLMs using age, sex, race, presence of diabetes, fever, body mass index (BMI), total bilirubin, maximum CBD diameter, and choledocholithiasis on pre-ERCP noninvasive imaging predict ERCP-confirmed choledocholithiasis with good sensitivity and specificity and outperform the ASGE criteria for patients with suspected choledocholithiasis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View