PowerMorph: QoS-Aware Server Power Reshaping for Data Center Regulation Service
Skip to main content
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

PowerMorph: QoS-Aware Server Power Reshaping for Data Center Regulation Service

Published Web Location


Adoption of renewable energy in power grids introduces stability challenges in regulating the operation frequency of the electricity grid. Thus, electrical grid operators call for provisioning of frequency regulation services from end-user customers, such as data centers, to help balance the power grid’s stability by dynamically adjusting their energy consumption based on the power grid’s need. As renewable energy adoption grows, the average reward price of frequency regulation services has become much higher than that of the electricity cost. Therefore, there is a great cost incentive for data centers to provide frequency regulation service. Many existing techniques modulating data center power result in significant performance slowdown or provide a low amount of frequency regulation provision. We present PowerMorph , a tight QoS-aware data center power-reshaping framework, which enables commodity servers to provide practical frequency regulation service. The key behind PowerMorph  is using “complementary workload” as an additional knob to modulate server power, which provides high provision capacity while satisfying tight QoS constraints of latency-critical workloads. We achieve up to 58% improvement to TCO under common conditions, and in certain cases can even completely eliminate the data center electricity bill and provide a net profit.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View