Skip to main content
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Dyson indices and Hilbert-Schmidt separability functions and probabilities


A confluence of numerical and theoretical results leads us to conjecture that the Hilbert-Schmidt separability probabilities of the 15- and 9-dimensional convex sets of complex and real two-qubit states (representable by 4 x 4 density matrices.) are 8/33 and 8/17, respectively. Central to our reasoning are the modifications of two ansatze, recently advanced by Slater (2007 Phys. Rev. A 75 032326), involving incomplete beta functions B.(a, b), where. v = rho(11)rho(44)/rho(22)rho(33). We, now, set the separability function S-real(v) proportional to Bv(v, 1/2, 2) = 2/3(3 -v)root v. Then, in the complex case - conforming to a pattern we find, manifesting the Dyson indices (beta = 1, 2, 4) of random matrix theory - we take S-complex(v) proportional to S-real(2)(v). We also investigate the real and complex qubit-qutrit cases. Now, there are two variables,v(1) =rho(11)rho(55)/rho(22)rho(44),v(2) =rho(22)rho(66)/rho(33)rho(55), but they appear to remarkably coalesce into the product. eta = v(1)v(2) = rho(11)rho(66)/rho(33)rho(44), so that the real and complex separability functions are again univariate in nature.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View