Skip to main content
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM


As an episode of rapid global warming associated with the release of massive quantities of carbon to the atmosphere and oceans, the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) is considered a potential analog for modern anthropogenic carbon emissions. However, the prevailing order of magnitude uncertainty in the rate of carbon release during the PETM precludes any straightforward comparison between the paleo-record and the modern. Similar barriers exist to the interpretation of many other carbon isotope excursions in the geological record. Here we use the Earth system model cGENIE to quantify the consequences of differing carbon emissions rates on the isotopic record of different carbon reservoirs. We explore the consequences of a range of emissions scenarios - from durations of carbon input of years to millennia and constant versus pulsed emissions rates, and trace how the isotopic signal is imprinted on the different carbon reservoirs. From this, we identify a characteristic relationship between the difference in carbon isotope excursion sizes between atmospheric CO2 and dissolved inorganic carbon (DIC) and the duration of carbon emissions. To the extent that available isotopic data spanning the PETM constrain the size of the marine and atmospheric carbon isotopic excursions, applying this empirical relationship suggests the duration of the component of carbon emissions that dominates the isotopic signal could be less than 3000 yr. However, utilizing the ratio of excursion size in the atmosphere to ocean as a metric to constrain duration of carbon emissions highlights the necessity to strengthen estimates for these two measurements across the PETM. Our general interpretive framework could be equally applied in assessing rates of carbon emissions for other geological events.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View