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Abstract 

OpenStreetMap (OSM) data consist of digitized geographic objects with semantic tags assigned 
by the volunteer contributors. The tags describe the geographic objects in a way that is 
understandable by both humans and computers. The variability in contributor behaviour creates 
reliability concerns for the tagging quality of OSM data. The detection of irregular contributions 
may improve OSM data quality and editing tools. This research applies the random forest 
algorithm on geospatial variables in order to detect outliers without ground-truth reference data 
to direct human inspection. An application to OSM data for Toronto, Ontario, was effective in 
revealing abnormal amenity tagging of school and hospital objects. 

1. Introduction 
OpenStreetMap (OSM) is an online platform enabling registered volunteers to contribute 
geospatial data by digitizing point-, line-, or polygon-shaped geographic objects and annotating 
them with tags referring to common feature classes such as roads and restaurants (Haklay 2008). 
OSM tags are semantically structured as key-value pairs, where the key refers to a broad class of 
geographic objects and the value details the specific geographic object being tagged (Ballatore et 
al. 2013). Examples of tags are amenity=school, highway=residential, and building=house.  

The open and flexible nature of OSM tagging leads to varying contribution behaviour by 
different communities (Mooney et al. 2010). The varying contribution behaviour creates 
concerns about the quality of OSM data and the community standards of OSM tagging. Quality 
control and corrections rely heavily on human interaction, which raises additional questions on 
the reliability of OSM data. Finally, the experience of the volunteer contributor has an effect on 
the tagging quality of each geographic object as experienced contributors are more familiar with 
the tagging norms of the area being edited. Although OSM is an effective and efficient platform 
for generating masses of geospatial data, it is plagued by reliability, quality, and completeness 
issues. 

The aim of this paper is to examine the ability of an automated machine learning 
algorithm, the random forest algorithm, to support manual human inspection and minimize bias 
in OSM data editing. The use of an automated algorithm improves the detection of abnormal 
tagging behaviour, avoids the bias of human judgement, and reduces the time required to search 
through masses of tagged geographic objects. A combination of human knowledge and 
experience with the logical accuracy of machines could improve OSM tagging quality and 
standards, and enable the development of advanced editing tools.  

 

2. Data and Methods 
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OSM data for the City of Toronto, Ontario, were downloaded from Mapzen Metro Extracts in 
the form of a GEOJSON file (Mapzen 2016). A GEOJSON file contains one or more spatial 
objects described by geometry types and properties in a key/value data structure (Butler et al. 
2008). The OSM key category datasets amenities, places, transport areas, aero ways, transport 
points, and roads were selected to be used from the downloaded data. The selected data consisted 
of 70,535 geographic objects in the City of Toronto detailed in Table 1. The majority of 
geographic objects resided in the transport points and roads datasets. The data were projected 
from a geographic coordinate system (WGS 1984) into a planar coordinate system (NAD 1983 
UTM Zone 17 North) for geometric calculations. A tag value is referred to as a tag in this paper. 
 

Table 1. OpenStreetMap Data for City of Toronto, Ontario from Mapzen. 
Key Category Dataset Tag Values Available Geometry Type Count 
Amenities fire_station, fuel, hospital, library, 

police, school, townhall, university 
Point 1507 

Places city, county, hamlet, locality, 
neighbourhood, suburb, town, 
village 

Point 760 

Transport Areas aerodrome, apron, helipad, 
platform, station, terminal 

Polygon 72 

Aero Ways runway, taxiway Line 438 
Transport Points aerodrome, bus_stop, crossing, 

gate, halt, helipad, level_crossing, 
motorway_junction, station, 
subway_entrance, terminal, 
tram_stop, turning_circle 

Point 21,309 

Roads disused, monorail, motorway, 
motorway_link, preserved, 
primary, primary_link, rail, 
secondary, secondary_link, 
subway, tertiary, tertiary_link, 
tram, trunk, trunk_link 

Line 46,812 

 
  The methods first required the extraction of geospatially meaningful variables to 
describe the geometric characteristics and spatial relationships of each geographic object. The 
first set of geospatial variables were extracted by utilizing the geometric structures in the data. 
Area, length, and the number of vertices for each geographic object in the data were extracted as 
columns. These geospatial variables describe the geographic objects in terms of geometric 
characteristics such as size (area) and geometric complexity (vertices). Representative 
coordinates were also extracted in the form of the x- and y-coordinates of the centre of each 
object. These representative coordinates allowed the random forest model to utilize spatial 
patterns if they existed. The second set of geospatial variables were the distances to the nearest 
uniquely tagged geographic object for each individual geographic object. A column was created 
for each of the available tag values. These columns were referred to as the Distance to the 
Nearest Neighbour Tag (DNNT). An example of the DNNT concept is seen in Figure 1. 

GIScience 2016 Short Paper Proceedings

341



Redundant variables were removed by examining each variable for a high correlation (less than -
0.7 and greater than 0.7) to another variable and removing the other highly correlated variables 
in a specified order. The order arranged the area, length and vertices first, followed by sorting the 
DNNT variables by their tag frequency. The result of the extracted geospatial variables after 
removing redundant variables is referred to as the input data in this paper. 
 

 
Figure 1. Distance to the Nearest Amenity Tag for a Police Station Object. 

 
 Several random forest models were run on the input data to classify the tag value of 
geographic objects. A random forest consists of a number of decision trees built on subsamples 
of approximately two-thirds of the input data (Breiman 2001). The other one-third of the 
subsamples are used to calculate an out-of-bag error estimate by aggregating the predictive 
scores (Liaw and Wiener 2002). Each random forest model used balanced tag weights, 
penalizing misclassification of minority tags, to adjust for tag frequency imbalances in the data 
(Chen et al. 2004). A number of maximum split variables equal to the square root of the number 
of variables in the input data were used for each decision tree in the random forest models. Three 
random forests models were constructed to optimize the number of decision trees using 64, 96, 
and 128 decision trees as suggested by Oshiro et al. (2012) to determine the model with the 
lowest out-of-bag error estimate. The selected model with the lowest out-of-bag error estimate is 
referred to as the Tree Optimized Random Forest (TORF) model in this paper. 

The TORF model was used to determine outliers in the input data by calculating 
proximity measures between two geographic objects (Louppe 2014) to produce proximity 
matrices for geographic objects inside each tag followed by calculating outlier measures (eq. 1) 
according to Breiman and Cutler (2004) for each geographic object. 
 𝑜𝑢𝑡𝑙𝑖𝑒𝑟(𝑛𝑐) =  

𝑁
∑ [𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑛𝑐, 𝑘𝑐)]2𝐾

𝑘𝑐

 
(eq. 1) 

   
where 𝑛𝑐 is a sample instance of tag 𝑐, 𝑘𝑐 is all other sample instances of tag 𝑐, 𝐾 is the total 
number of 𝑘𝑐, and 𝑁 is the total number of 𝑛 samples. The outlier measures were then 
normalized by subtracting every outlier value for 𝑛 instances of each tag 𝑐 by the median of all 
outlier measures inside the same tag 𝑐, and dividing by the absolute deviation from the median. 
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A geographic object was suspected of being an outlier if its normalized outlier measure was 
greater than 10. 
 The interpretation of outliers was enhanced by using local variable contribution 
increments (eq. 2) to calculate variable contributions (eq. 3) according to Palczewska et al (2014) 
for the outlier tags. The variable contributions were ranked to find the most influential variables. 
 𝐿𝐼𝑓

𝑐 = { 𝑌𝑚𝑒𝑎𝑛
𝑐 − 𝑌𝑚𝑒𝑎𝑛 

𝑝     𝑖𝑓 𝑠𝑝𝑙𝑖𝑡 𝑜𝑓 𝑝 𝑖𝑠 𝑓𝑜𝑟 𝑓
0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 (eq. 2) 

where 𝐿𝐼 is the local variable contribution increment, 𝑓 is a variable, 𝑐 is the child node, 𝑝 is the 
parent node, 𝑌𝑚𝑒𝑎𝑛

𝑐  is the fraction of training samples in a child node, and 𝑌𝑚𝑒𝑎𝑛
𝑝  is the fraction of 

training samples in a parent node. 
 

𝐹𝐶𝑖
𝑓 =

1
𝑇 ∑ 𝐹𝐶𝑖,𝑡

𝑓
𝑇

𝑡=1

 
(eq. 3) 

where 𝐹𝐶𝑖
𝑓 is the variable contribution of a training sample, 𝐹𝐶𝑖,𝑡

𝑓  is the sum of local variable 
specific contribution increments, 𝑓 is a variable, 𝑇 is the total number of trees in the forest, 𝑡 is a 
tree in the forest, and 𝑖 is a training sample. 

3. Results 
The TORF model was obtained from 128 trees, which provided the lowest out-of-bag error of 
0.162 compared to 0.166 and 0.167 for 96 and 64 trees respectively. The schools in Figure 2 and 
the hospitals in Figure 3 had normalized outlier measures above 10. Closer inspection of the 
schools revealed that the schools are historical and were far away from bus stops. The hospitals 
were individual wings of Sunnybrook hospital, which were further away from secondary roads 
than normal. 
 

 
Figure 2. Detected Tag Outliers of Value School 
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Figure 3. Detected Tag Outliers of Value Hospital 

4. Conclusion 
The use of random forests for outlier detection has the potential to support manual data cleaning 
efforts, where the discovery of potential outliers that may yield insight into the community 
tagging standards and errors in a study area. The outlier interpretation was also enhanced by the 
variable contributions, which may provide reasons for abnormal tags. However, satellite imagery 
and user editing history were not used, although they may have a significant impact on outlier 
detection. Only nearest neighbour objects were used, other spatial relations such as distance 
buffers should be tested in the future. Adding raster data, temporal data, and a variety of spatial 
relations to the random forest model could further improve the outlier detection of OSM tags.  
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