A Novel Approach to Medical Student Peer-assisted Learning Through Case-based Simulations
Skip to main content
eScholarship
Open Access Publications from the University of California

A Novel Approach to Medical Student Peer-assisted Learning Through Case-based Simulations

  • Author(s): Jauregui, Joshua
  • Bright, Steven
  • Strote, Jared
  • Shandro, Jamie
  • et al.
Abstract

Introduction: Peer-assisted learning (PAL) is the development of new knowledge and skills through active learning support from peers. Benefits of PAL include introduction of teaching skills for students, creation of a safe learning environment, and efficient use of faculty time. We present a novel approach to PAL in an emergency medicine (EM) clerkship curriculum using an inexpensive, tablet-based app for students to cooperatively present and perform low-fidelity, case-based simulations that promotes accountability for student learning, fosters teaching skills, and economizes faculty presence.

Methods: We developed five clinical cases in the style of EM oral boards. Fourth-year medical students were each assigned a unique case one week in advance. Students also received an instructional document and a video example detailing how to lead a case. During the 90-minute session, students were placed in small groups of 3-5 students and rotated between facilitating their assigned cases and participating as a team for the cases presented by their fellow students. Cases were supplemented with a half-mannequin that can be intubated, airway supplies, and a tablet-based app (SimMon, $22.99) to remotely display and update vital signs. One faculty member rotated among groups to provide additional assistance and clarification. Three EM faculty members iteratively developed a survey, based on the literature and pilot tested it with fourth-year medical students, to evaluate the course.

Results: 135 medical students completed the course and course evaluation survey. Learner satisfaction was high with an overall score of 4.6 on a 5-point Likert scale. In written comments, students reported that small groups with minimal faculty involvement provided a safe learning environment and a unique opportunity to lead a group of peers. They felt that PAL was more effective than traditional simulations for learning. Faculty reported that students remained engaged and required minimal oversight. 

Conclusion: Unlike other simulations, our combination of brief, student-assisted cases using low-fidelity simulation provides a cost-, resource- and time-effective way to implement a medical student clerkship educational experience.

 

Main Content
Current View