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                             INFORMATION RECOVERY IN COMPLEX  

                               ECONOMIC BEHAVIOR SYSTEMS 

George Judge1 

1 August, 2023 

Abstract 

In this paper, we recognize that reigning reductionist econometric paradigms do not provide a 

basis for understanding complex economic behavioral processes and systems. To acknowledge 

that the collective behavior in complex adaptive systems is different from that of the individual 

parts, we borrow some of the key fundamental concepts of entropy methods, and 

nonequilibrium systems dynamics to develop a theoretical economic framework for self-

organizing-optimizing economic behavior systems at the macro-level that is based on nonlinear 

individual behavior at the micro-level. We illustrate the use of the proposed framework with 

applications that provide a basis for linking the econometric information sources.  
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1. Introduction   

 In 1776 Adam Smith, in his book the Wealth of Nations, viewed the economic scene, and 

described the resulting emerging behavior system as being guided by an invisible hand based 

on self-interest.  This self-organized concept, replaced the conventional reductionist concept, 

where the collected behavior of the whole is different, from that of its parts. In this paper we 

use the concepts of emergence and self-organization of what may seem like a seemingly random 

system, as a basis for information recovery in complex economic behavior systems that are 

stochastic, dynamic, nonlinear in nature, seldom if ever in equilibrium, These complex 

economic behavior systems have nonlinear causality, and the parts are interdependent. 

Although Boltzmann’s equation (Boltzmann,1872) on the principles of statistical mechanics 

and the study of nonlinear systems occurred over a century ago, the study of complex economic 

behavior systems has not been a topic of interest in econometrics.  

    To acknowledge this void, we borrow some of the key concepts of entropy methods, quantum 

economics, and nonequilibrium emergent systems dynamics, to develop a theoretical economic 

framework for analyzing outcomes at the macro-level, based on self-organizing-optimizing 

economic behavior at the micro-level. In this context, emergence refers to the collective 

behavior in complex adaptive systems, that is not present in their individual parts. For relevant 

information on entropy and quantum economics see (Jakimowicz , 2020), and on emergence, 

see Arrow, Anderson and Pines,(1988), and Laughlin and Pines,(2002), and the references 

therein. In emergent self-organizing equilibrium seeking stochastic economic behavior systems, 

we indicate how to use information theoretic entropy-divergence methods to represent and 

evaluate the complex nature of the economic behavior systems, and to link economic-
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econometric information sources. Nonlinear probabilistic reasoning provides a natural language 

and serves as the scientific logic. A macroeconomic system’s emergent behavior and 

predictability may then be studied quite naturally by information theoretic entropy divergence 

measures that reflect a state of knowledge in an inferential context.  

Most complex economic behavior system theories are expressed in terms of reductionist 

models, that seek to understand the behavior of the whole by reducing them to the interaction 

of their parts. Thus, the premise of reductionism is that a complex system can be broken down 

into constituent parts, which are studied independently, and then reassembled to understand the 

behavior of the system as a whole. The econometric dynamic, stochastic, general equilibrium 

reductionist counterpart usually appears in a functional form-linear mode and uses observed 

data consistent empirical sample moments-constraints, such as 

                               ,                              (1.1)                   

where  are respectively a , ,  vector/matrix of dependent variables, 

explanatory variables and instruments, and  is an unknown and unobservable parameter 

vector. A solution to the stochastic recovery problem (1.1) is usually based on parametric and 

semiparametric likelihood functions and on a range of observed data sampling processes that 

involve a finite set of moments. The moments are usually based on indirect noisy observations 

that are in the effect domain while our interest is in the causal domain. Higher order moments 

are assumed to be well behaved, an assumption often violated in real world markets where long 

tail distributions prevail. Obtaining a meaningful probabilistic basis for a realistic dynamic 

( ) ( )1, , ;
p

n− = − →  h Y X Z Z Y X 0 

, , andY X Z 1n n k n m





 4 

economic behavior system from this reductionist mix of model, data, and econometric method 

requires a computational task that is neither feasible nor meaningful. 

        In two current papers on the state of macro econometric models, Stiglitz, (2018) and 

Hendry and Meullbauer, (2018) make clear that reigning paradigms involving reductionist 

dynamic stochastic general equilibrium (DSGE) models do not provide a basis for 

understanding complex economic behavioral processes and systems and predicting deep 

changes in the economy. Given the unsatisfactory nature of the reductionist econometric 

information recovery process, in this paper we borrow the key concepts of self-organizing-

emergent-optimizing economic behavior in nonequilibrium statistical-econometric systems and 

information theoretic Cressie-Read (CR) entropy-based methods to develop a recovery 

framework that is based on nonlinear stochastic dynamics at the macro level and stochastic 

individual behavior at the micro-level.  

 

1.1 Structure of the Paper 

         In the sections ahead, we provide an information theoretic entropy-divergence framework 

for combining the traditional econometric and information sources. In Section 2 we discuss the 

underlying connection between economic behavior systems-processes and entropy and how this 

linkage helps establish an entropy driven statistical framework for studying self-organizing-

optimizing economic behavior systems. In Section 3 we discuss the information theoretic 

Cressie-Read (CR) divergence function framework for combining information sources-

processes.  In section 4 we demonstrate a simple economic information recovery problem that 

may provide a basis for linking the econometric learning information sources. In section 5 we 
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consider a useful attribute of the CR divergence function, that leads to a Markov process 

combining framework in discrete state and time and the Kullback-Leibler basis for expressing 

the mutual information of two processes In section 6 we summarize the paper and look ahead 

and speculate on possibilities for measuring information transfer and interaction in systems. 

 

2. Self-Organized Economic Behavior-Entropy Connection 

In the attempt to formulate statistical physics, in a way that is independent of the physics 

of particles, the Maximum Entropy Principle (MEP) was developed by Jaynes (1978). In the 

MEP context, entropy is used as a means of statistical inference on multinomial processes.  

Thus MEP is closely related to the question of finding the most likely observable microstates 

of a system or process, where a microstate is a particular configuration of the components of a 

system. The distribution function p, or the histogram k, is such a macro state. The focus is on 

finding the most likely observable distribution function of a given process of a system. 

Georgescu-Roegen in (1971 noted that a theoretical mathematical model of the 

economic behavior system, had something in common with random processes that obeyed the 

laws of probability-stochastic processes and entropy. Recently, Wissner-Gross and Freer, 

(2013) exhibited a connection between adaptive intelligent behavior and causal entropy 

maximization that provided an entropy basis for self-organization(emergence)-optimization in 

multi-agent behavioral economic systems. This causal entropic force connection, that is 

consistent with the idea that an economic system adapts behavior in line with an optimizing 

principle (see Judge, (2015), Miller and Judge, (2015) and Judge, (2016)), leads to self-

organized equilibrium seeking behavior in an open seemingly random economic behavioral 
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system and establishes an entropy driven inferential framework. In this context behavior-market 

systems are equilibrium stationary state seeking and the entropic force quantifies the intuitive 

notion that systems are more likely to move from a low probability to a high probability state. 

Predictability of a system in terms of an entropy function, or entropy functions, is then 

equivalent to the study of its statistical-nonequilibrium nature, Thus, for example, if we 

characterize a macro state by its probability distribution-multiplicity of microstates, entropy 

reflects the number of ways a macro state can evolve along a path of possible microstates.  This 

view permits us to recognize that economic data comes from systems with dynamic adaptive 

behavior that are non-deterministic in nature, involve uncertainties that can be quantified by the 

notion of information and are driven toward a certain stationary state associated with a 

functional and hierarchical structure. As we seek new ways to think about the causal adaptive 

behavior of large complex and dynamic economic systems, the Wissner-Gross and Freer (2013) 

economic behavior entropy connection means that we can use entropy as the systems status 

measure-optimizing criterion. A uniform-unstructured distribution of the microstates 

corresponds to a macro state with maximum entropy and minimum system information. In this 

context, causal entropy maximization is a link that leads us to believe that an economic-

behavioral system with a large number of agents interacting locally and in finite time is in fact 

optimizing itself. One of the most general entropy information-theoretical functions that 

measure uncertainties, or missing information, or discrimination, is a CR family of divergence-

entropy measures and this is the topic to which we turn. 

 

3. The Information Theoretic Minimum Divergence Family  
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In this section, we discuss how information theoretic entropy methods provide a natural 

basis in questions regarding economic behavioral systems, for establishing a causal influence-

econometric-inferential link to the data and solving the resulting statistical equilibrium 

problem. In this information recovery context, a natural solution in terms of economic policy is 

to use estimation and inference methods that are designed to deal with systems that may be 

nonlinear and stochastic in nature, where uncertainty and random behavior are basic to 

information recovery. To identify estimation and inference measures that represent a way to 

link the model of the process to a family of possible likelihood functions, we use the Cressie 

and Read (CR), (1984) and Read and Cressie, (1988) single parameter CR family of entropic 

function-power divergence measures given by  

 (3.1) 

In (3.1), the value of  is a parameter that indexes members of the CR family, the  

represent the subject data probability distribution, and the  are reference non sample prior 

probabilities and p and q are vectors of and , respectively. The usual probability 

distribution characteristics of , , and  are assumed to 

hold. In (3.1), as γ varies, the resulting CR-entropy statistical family of estimators that minimize 

power divergence, exhibit qualitatively different sampling behavior that includes maximum 

entropy and in general, a range of additive and correlated systems (see Gorban, et al. (2010), 

Judge and Mittelhammer (2011), (2012)). In identifying the probability space, the CR family 

of power divergences is defined through a class of additive convex functions that represents a 
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broad family of likelihood functional relationships and test statistics. All well-known 

divergences-entropies belong to this class of CR functions. In addition, the CR measure exhibits 

formal convexity in p, for all values of 𝛾 and q, and embodies the required probability system 

characteristics, such as invariance with respect to a monotonic transformation of the divergence 

measures. As  varies, the optimized value of, represents a range of data sampling 

processes, likelihood functions and ensembles, and the corresponding estimators that minimize 

power divergence exhibit qualitatively different sampling behavior. For example, in the limit 

as 𝛾→0, the solution of the first-order condition leads to the maximum entropy and the logistic 

expression for the conditional probabilities. In the limit 𝛾→0, the Maximum Exponential 

Empirical Likelihood (MEEL) estimator,is the most likely distribution to be observed from a 

statistical or combinatorial point of view 

 

4. Entropy Based Probability Density Functions 

To develop an economic framework for self-organizing-optimizing economic behavior 

systems at the macro-level, that is based on individual behavior at the micro-level that describes 

the microstate in the economic system, we can use the CR- , 𝛾→0 divergence-distance 

measure and a sample of micro data. As an example, in this section, assuming no prior 

information, we use a sample of a country’s income data and discretize income levels by a finite 

number of nonoverlapping intervals-histograms, to establish a data-based link to recover the 

micro income probability density function-distribution and the macro income inequality 

measure. We use histograms to connect the micro and macro states,  The microstates that are 

( ), ,I p q

( ), ,I p q
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the subject of inference and the number of microstates-micro configurations, is called the 

multiplicity of the macro state. In recovering the income probability density function-

distribution from a sample of N positive real numbers, we assume the income probability to be 

represented by K histograms that span the income sample space. Samples from these partitions 

yield histogram outcomes of the discrete random income variable 𝑑𝑗 , for 𝑗 = 1, 2, … , 𝑛, and 

under repeated observation, one of n histograms-micro configurations associated with the 

macro state income is observed with probability 𝑝𝑗. After a large number of trials, we recover 

first-moment sample information in the form of the mean value of ∑ 𝑑𝑗
𝐾
𝑗=1 𝑝𝑗 = 𝑑̄. Under this 

specification, when in the limit γ→0, the CR 𝐼(𝒑, 𝒒, 𝛾) converges to an estimation criterion 

equivalent to the maximum exponential empirical likelihood (MEEL) metric  𝐻(𝒑) =

− ∑ 𝑝𝑗
𝐾
𝑗=1 ln ( 𝑝𝑗). The extremum problem likelihood-entropy function may then be formulated 

as 

 

max
𝒑

[− ∑ 𝑝𝑗ln 𝑝𝑗

𝐾

𝑗=1

  | ∑ 𝑝𝑗

𝐾

𝑗=1

𝑑𝑗 = 𝑑̄, ∑ 𝑝𝑗

𝐾

𝑗=1

= 1, 𝑝𝑗 >  0,

for all j ]. 

(4.1) 

 

The corresponding Lagrange function-extremum problem is  
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𝐿(𝒑, 𝜂, 𝝀) ≡ − ∑ 𝑝𝑗

𝐾

𝑗=1

ln ( 𝑝𝑗) + 𝝀 (𝑑̄ − ∑ 𝑝𝑗

𝐾

𝑗=1

𝑑𝑗)

+ 𝜂 (1 − ∑ 𝑝𝑗

𝐾

𝑗=1

). 

(4.2) 

 

Solving the first-order conditions yields the exponential result 

 

𝑝̂𝑗 =
𝑒𝑥𝑝 ( − 𝑑𝑗𝝀̂)

∑ 𝑒𝑥𝑝 (𝐾
𝑗=1 − 𝑑𝑗𝝀̂)

 
(4.3) 

 

 

for the 𝑗th income outcome and the mean-related income distribution. Using the CR (γ → 0) 

entropy functional, the joint histograms and the mean of a country’s income data, the resulting 

probability density income distribution and the entropy inequality income measure 

∑ 𝑝𝑗
𝐾
𝑗=1 ln ( 𝑝𝑗) 𝑖𝑠 recovered, and provides a measure of income inequality. For an application 

of this income distribution information recovery method, see Villas Boas, et al., (2019). 

 

4.1 Reference Distribution 

The income probability density function-distribution reported in section 4.1, was 

obtained using a uniform reference distributions q. In practice when estimating income 

distributions, in many situations we may also have information from other countries, which we 

denote as income patterns and probabilities 𝐩 = (p1, p2, ⋯ , pk)′, in the form of a reference 

distribution of probabilities 𝐪 = (q1, q2, ⋯ , qk)′. That is, when making use of the sample of 
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micro data that enters in the consistency relations, in (4.1) and (4.2), there may be additional 

information in the form of a non-uniform reference distribution 𝒒, that provides information 

concerning the income probability distribution. When such prior non-uniform reference 

information-knowledge exists, we may wish to follow Kullback and Liebler (1951), Kullback, 

(1959) and Good, (1963) and incorporate this information in the form of the principle of 

minimum cross-relative entropy or Kullback-Liebler (KL) directed divergence. This minimal 

discriminability principle implies one would choose, given the constraints, the estimate of 𝐩 

that can be discriminated from the non-uniform reference distribution 𝐪, with a minimum of 

difference. The KL estimation objective function can be seen as a particular case of the more 

general CR family of entropy discrepancy-distance measures introduced in section 3. Thus, the 

principle of minimum cross-relative entropy or KL directed divergence, makes it possible to 

use-combine the information to recover a country’s income distributions and entropy measure 

of inequality. The divergence functions over probability distributions, provide a strong and 

rigorous macro-economic index for systems of various behaviors.  

For example, instead of a uniform distribution q, we can make use of the distribution 

𝑞𝑀𝐿 , as the reference distribution in (3.1). In the CR formulation (3.1),  → -1 and probabilities 

𝑞𝑀𝐿 replaces the uniform reference distribution in (3.1). This leads to the KL empirical 

likelihood criterion 

 

lim
 → −1

𝐼(𝒑, 𝒒𝑴𝑳, 𝛾) = ∑ 𝑞𝑗𝑀𝐿
𝑛
𝑗=1 ln(𝑝𝑗/𝑞𝑗𝑀𝐿) = ∑ 𝑞𝑗𝑀𝐿

𝑛
𝑗=1 ln(𝑝𝑗) − ∑ 𝑞𝑗𝑀𝐿

𝑛
𝑗=1 ln(𝑞𝑗𝑀𝐿),     

(4.4) 
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where ∑ 𝑞𝑗𝑀𝐿 ln(𝑞𝑗𝑀𝐿),𝑛
𝑗=1  is a constant. Using this criterion, the data constraint, and a selected 

mean, results in  

 

𝑝̂𝑗𝑀𝐿(𝑑̅, 𝜆̂) = 𝑞𝑗𝑀𝐿 (1 + 𝜆̂(𝑑𝑗 − 𝑑̅))
−1

 for 𝑗 = 1, … , 𝑛,   (4.5) 

 

where 𝜆̂ is such that 𝑝̂𝑗𝑀𝐿(𝑑̅, 𝜆̂) satisfies the mean constraint (5.1). The solution, 𝑝̂𝑗𝑀𝐿 , may then 

be used to estimate the combined income distribution and a new entropy measure of income 

inequality. For empirical applications of this type of information recovery from micro data, and 

the inequality income measure, see Villa-Boas, et al. (2019), and Judge (2019). 

 

5. An Entropic Prior 

Given this base, we now discuss another useful attribute of the divergence functions of 

the distributions. Assume we are observing an economic system on a relatively long, time scale. 

Then the current state of the system depends largely on the closest previous state, and the history 

over longer terms does not have much influence. After discretizing income levels, a Markov 

process with finite discrete state and discrete time is obtained. We denote this Markov process 

with the Markov matrix P. We can then demonstrate a monotonic decreasing of the CR entropy 

family (3.1), 𝛾 ≥ 0, with Markov dynamics, where p(t) and q(t) are two distributions following 

the Markov chain, with different initial distribution p(0) and q(0): 
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𝑝𝑖(𝑡 + 1)

𝑞𝑖(𝑡 + 1)
=

∑ 𝑝𝑗(𝑡)𝑃𝑗𝑖𝑗=1

𝑞𝑖(𝑡 + 1)
=

1

𝑞𝑖(𝑡 + 1)
∑{j=1}

n
pj (𝑡)𝑞𝑗(𝑡)𝑃𝑗𝑖

qj(𝑡)
  

 

=
1

∑ 𝑞𝑗(𝑡)𝑃𝑗𝑖
𝑛
𝑗=1

∑ 𝑞𝑗(𝑡)𝑃𝑗𝑖 (
𝑝𝑗(𝑡)

𝑞𝑗(𝑡)
) .

𝑛

𝑗=1

  

Then with a convex function 𝜑(x) : 

𝑞𝑖(𝑡 + 1)φ (
pi(𝑡 + 1)

𝑞𝑖(𝑡 + 1)
) ≤

𝑞𝑖(𝑡 + 1)

∑ 𝑞𝑗(𝑡)𝑃𝑗𝑖
𝑛
𝑗=1

∑ 𝑞−𝑗(𝑡)𝑃𝑗𝑖𝜑

𝑛

𝑗

(
𝑝𝑗(𝑡)

𝑞𝑗(𝑡)
) = ∑ 𝑞𝑗(𝑡)𝑃𝑗𝑖𝜑

𝑛

𝑗=1

(
𝑝𝑗(𝑡)

𝑞𝑗(𝑡)
). 

The function 𝜑(𝑥) = 𝑥𝛾+1 is convex and additive. Therefore, 

𝐼({𝑝𝑖(𝑡 + 1)}, {𝑞𝑖(𝑡 + 1)}, 𝛾) =
1

𝛾
{∑ 𝑞𝑖(𝑡 + 1) (

𝑝𝑖(𝑡 + 1)

𝑞𝑖(𝑡 + 1)
)

𝛾+1𝑛

𝑖=1

} 

≤
1

𝛾
{∑ ∑ 𝑞𝑗(𝑡)

𝑛

𝑗=1

𝑃𝑗𝑖 (
𝑝𝑗(𝑡)

𝑞𝑗(𝑡)
)

𝛾+1

− 1

𝑛

𝑖=1

} 

                            =
1

𝛾
{∑ 𝑞𝑗(𝑡) (

𝑝𝑗(𝑡)

𝑞𝑗(𝑡)
)

𝛾+1

− 1𝑛
𝑗=1 } = 𝐼({𝑝𝑖(𝑡)}, {𝑞𝑖(𝑡)}, 𝛾),           (5.1) 

where the inequality in (5.1) follows from the convexity of (∙)𝛾+1. 

 

 In many cases, we are only interested in a periodic irreducible Markov processes, because 

the probability of a state being strictly periodic is practically zero, and if the entire system can 

be reduced into subsystems, we can study the subsystems individually. In those cases, the CR 

entropy approaches zero as p, q approaches the unique stationary distribution. Finally, the limit 

of I(p, q, γ) when γ goes to 0 is  
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   lim
𝛾→0

𝐼({𝑝𝑖}, {𝑞𝑖}, 𝛾) = ∑ 𝑙𝑛 (
𝑝𝑖

𝑞𝑖
) ,𝑛

𝑖=1                                         (5.2) 

which is the KL divergence measure in the discrete case. This criterion leads to a natural 

measure of the deviation of the distribution of probabilities 𝐩 and 𝐪. Under the principle of 

minimum discriminability, the difference 𝐼(𝒑, 𝒒) is minimized. To take account of both an 

informative prior reference distribution, and the micro data sample information, the minimum 

cross-entropy solution may be obtained from the minimization problem (5.1), subject to the 

moment consistency constraints and the adding up-normalization constraint. The entropy 

measure gives a monotonicity relation to the Markov process., and in contrast to moment-based 

estimation problems, where matching the leading moments does not guarantee convergence in 

probability measures, KL-divergence upper bounds the large deviation rate function, and thus 

controls moments of all orders. Consequently, the  divergence functions 

over discrete probability distributions defined on the same probability space, provide a strong 

and rigorous macro-economic index for systems with various behaviors. Importantly in terms 

of information recovery, this entropy measure provides a divergence framework, and a strong 

and rigorous basis for integrating-linking the transfer of information, for discrete probability 

distributions defined on the same probability space, and that come from various sources-

behaviors. 

 

6. Summing Up 

 This paper contains examples of the use of entropy in recovering information in complex 

economic behavior systems.  We recognize the failure of reigning paradigms to provide a basis 

( ) ( ), ,  or , ,I I p q q p
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for understanding the hidden nonlinear dynamics generated from complex economic behavioral 

processes and systems. To fill this void, we borrow some of the key concepts of entropy based 

nonlinear divergence methods and physical systems dynamics to suggest a framework for self-

organizing-optimizing macroeconomic behavior systems that is based on nonlinear stochastic 

dynamics of individual behavior at the micro-level. A Markov decision process and a 

transitional reference distribution are used to measure the impact of the use of prior information 

on related macro-outcome variables. An entropy based minimum divergence method is used in 

a stochastic Markov dynamic context as a basis for predicting macroeconomic behavior.  

 Looking ahead, we recognize that for such things as climate policy (Kupers, (2020)), it is 

important to develop other nonlinear econometric frameworks for self-organizing-optimizing 

economic behavior systems at the macro-level that are based on nonlinear stochastic dynamics 

of individual behavior at the micro-level. Causality and the classification of policy changes and 

the stability of hidden structures within a paradigm  are subjects to be addressed in future work. 
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