Skip to main content
eScholarship
Open Access Publications from the University of California

Additive Manufacturing of High-Performance 316L Stainless Steel Nanocomposites via Selective Laser Melting

  • Author(s): AlMangour, Bandar Abdulaziz
  • Advisor(s): Yang, Jenn-Ming
  • et al.
Abstract

Austenitic 316L stainless steel alloy is an attractive industrial material combining outstanding corrosion resistance, ductility, and biocompatibility, with promising structural applications and biomedical uses. However, 316L has low strength and wear resistance, limiting its high-performance applicability. Adding secondary hard nanoscale reinforcements to steel matrices, thereby forming steel-matrix nanocomposites (SMCs), can overcome these problems, improving the performance and thereby the applicability of 316L. However, SMC parts with complex-geometry cannot be easily achieved limiting its application. This can be avoided through additive manufacturing (AM) by generating layer-by-layer deposition using computer-aided design data. Expanding the range of AM-applicable materials is necessary to fulfill industrial demand. This dissertation presents the characteristics of new AM-processed high-performance 316L-matrix nanocomposites with nanoscale TiC or TiB2 reinforcements, addressing specific aspects of material design, process control and optimization, and physical metallurgy theory.

The nanocomposites were prepared by high-energy ball-milling and consolidated by AM selective laser melting (SLM). Continuous and refined ring-like network structures were obtained with homogenously distributed reinforcements. Additional grain refinement occurred with reinforcement addition, attributed to nanoparticles acting as nuclei for heterogeneous nucleation. The influence of reinforcement content was first investigated; mechanical and tribological behaviors improved with increased reinforcement contents. The compressive yield strengths of composites with TiB2 or TiC reinforcements were approximately five or two times those of 316L respectively. Hot isostatic pressing post-treatment effectively eliminated major cracks and pores in SLM-fabricated components. The effects of the SLM processing parameters on the microstructure and mechanical performance were also investigated. Laser re-melting through double-scanning created higher-density SLM-processed parts with improved mechanical properties but longer production times. Certain scanning patterns minimized texture, creating near-isotropic structures. The energy density η crucially improved densification at the expense of increased grain size, causing mechanical behavior tradeoffs. It also influenced the size and dispersion state of TiC. In-situ SMCs were fabricated by SLM, an encouraging low-cost processing approach for high-performance parts. Interestingly, in-situ SMCs exhibited higher microhardness values in comparison to the ex-situ composites under fixed SLM processing conditions because of fine, uniform reinforcement distribution. The developed nanocomposites show promise as high-performance materials. Future research is suggested for strategic material developments.

Main Content
Current View