Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Porous Aromatic Framework Nanosheets Anchored with Lewis Pairs for Efficient and Recyclable Heterogeneous Catalysis.

  • Author(s): Meng, Qinghao
  • Huang, Yihan
  • Deng, Dan
  • Yang, Yajie
  • Sha, Haoyan
  • Zou, Xiaoqin
  • Faller, Roland
  • Yuan, Ye
  • Zhu, Guangshan
  • et al.

Published Web Location

http://dx.doi.org/10.1002/advs.202000067
No data is associated with this publication.
Abstract

Lewis pairs (LPs) with outstanding performance for nonmetal-mediated catalysis reactions have high fundamental interest and remarkable application prospects. However, their solubility characteristics lead to instability and deactivation upon recycling. Here, the layered porous aromatic framework (PAF-6), featuring two kinds of Lewis base sites (NPiperazine and NTriazine), is exfoliated into few-layer nanosheets to form the LP entity with the Lewis acid. After comparison with various porous networks and verification by density functional theory (DFT) calculations, the NTriazine atom in the specific spatial environment is determined to preferably coordinate with the electron-deficient boron compound in a sterically hindered pattern. LP-bare porous product displays high catalytic activity for the hydrogenation of both olefin and imine compounds, and demonstrates ≈100% activity after 10 successful cycles in hydrogenation reactions. Considering the natural advantage of porous organic frameworks to construct LP groups opens up novel prospects for preparing other nonmetallic heterogeneous catalysts for efficient and recyclable catalysis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item