Skip to main content
eScholarship
Open Access Publications from the University of California

Non-SMC condensin I complex proteins control chromosome segregation and survival of proliferating cells in the zebrafish neural retina

  • Author(s): Seipold, Sabine
  • Priller, Florian C
  • Goldsmith, Paul
  • Harris, William A
  • Baier, Herwig
  • Abdelilah-Seyfried, Salim
  • et al.
Abstract

Abstract Background The condensation of chromosomes and correct sister chromatid segregation during cell division is an essential feature of all proliferative cells. Structural maintenance of chromosomes (SMC) and non-SMC proteins form the condensin I complex and regulate chromosome condensation and segregation during mitosis. However, due to the lack of appropriate mutants, the function of the condensin I complex during vertebrate development has not been described. Results Here, we report the positional cloning and detailed characterization of retinal phenotypes of a zebrafish mutation at the cap-g locus. High resolution live imaging reveals that the progression of mitosis between prometa- to telophase is delayed and that sister chromatid segregation is impaired upon loss of CAP-G. CAP-G associates with chromosomes between prometa- and telophase of the cell cycle. Loss of the interaction partners CAP-H and CAP-D2 causes cytoplasmic mislocalization of CAP-G throughout mitosis. DNA content analysis reveals increased genomic imbalances upon loss of non-SMC condensin I subunits. Within the retina, loss of condensin I function causes increased rates of apoptosis among cells within the proliferative ciliary marginal zone (CMZ) whereas postmitotic retinal cells are viable. Inhibition of p53-mediated apoptosis partially rescues cell numbers in cap-g mutant retinae and allows normal layering of retinal cell types without alleviating their aberrant nuclear sizes. Conclusion Our findings indicate that the condensin I complex is particularly important within rapidly amplifying progenitor cell populations to ensure faithful chromosome segregation. In contrast, differentiation of postmitotic retinal cells is not impaired upon polyploidization.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View