- Main
Multi-objective optimization with an integrated electromagnetics and beam dynamics workflow
Published Web Location
https://doi.org/10.1016/j.nima.2021.165844Abstract
In particle accelerators, RF cavities are used to accelerate charged particle beams to designed high energy for physical applications. In a typical accelerator design, the optimization of RF cavities and the optimization of beam dynamics are carried out in separate studies. For a more general and unrestricted accelerator design, a coupled optimization of the RF cavities and the beam parameters is required. For this coupled optimization problem, we have developed an integrated electromagnetics and beam dynamics workflow management system. Within this system, the geometries for a set of cavity components are first adjusted; the field modes are then computed with an electromagnetics program, and imported into a beam dynamics program for beam dynamics simulation. This workflow is encapsulated into a parallel multi-objective optimizer to achieve the integrated accelerator design optimization. A multi fidelity strategy is developed to improve the speed of the optimizer. This integrated global optimization capability is illustrated using a photoinjector design example and yields an improved design.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-