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Abstract

Dynamic Prediction of Concurrency Errors

by

Caitlin Harrison Sadowski

Taking advantage of parallel processors often entails using concurrent software, where

multiple threads work simultaneously. However, concurrent software suffers from a bevy

of concurrency-specific errors such as data races and atomicity violations. Dynamic

analysis, based on analyzing the sequence of operations (called a trace) from a source

program as that program executes, is a powerful technique for finding concurrency errors

in multithreaded programs. Unfortunately, dynamic analyses are confined to analyzing

the observed trace.

Nonetheless, there are situations where a concurrency error does not manifest

on a particular trace although it is intuitively clear that the program that produced that

particular trace contains a concurrency error. The central research hypothesis explored

by this dissertation is that dynamic analysis can discover concurrency errors that do

not manifest on the observed trace.

This dissertation introduces a new relation, causally-precedes (CP), that en-

ables precise predictive race detection, with no false positives. A single CP-based race

detection run discovers several new races, unexposed by 10 independent runs of a tra-

ditional dynamic race detector. To further address dynamic predictive race detection,

this dissertation introduces the must-before relation and accompanying dynamic anal-

ysis tool (Embracer) that is not precise but enables online prediction. Experimental

results show that Embracer detects 20-23% more races than a traditional race detector

alone for reactive programs.

This dissertation also introduces SideTrack, a lightweight dynamic atomicity

analysis tool that generalizes from the observed trace to predict additional atomicity

ix



violations. Experimental results show that this predictive ability increases the number

of atomicity violations detected by SideTrack by 40%.

When developing these tools, it became clear that it was difficult to test

them. For example, test programs that contain data races may be non-deterministic. A

methodology for deterministic testing for dynamic analysis tools using trace snippets,

described in this dissertation, alleviates this difficulty.
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Chapter 1

Thesis

This dissertation is focused on pushing the state of the art of dynamic anal-

yses targeted at concurrency errors. Specifically, the thesis is that dynamic analyses

for concurrency errors can be made more powerful by using predictive techniques and

relations. First, let us unpack some of these terms.

1.1 Concurrency

Once upon a time programmers were taught to write sequential programs, with

the expectation that new hardware would make their programs perform faster. Around

2005, we hit a power wall [12]; the energy output of a chip with increased processor

speed has become untenable. Today, all major chip manufacturers have switched to

producing computers that contain more than one CPU [147]; parallel programming has

rapidly moved from a special-purpose technique to standard practice in writing scalable

programs. Taking advantage of parallel processors often entails using concurrent soft-

ware, where multiple threads work simultaneously. However, concurrent software suffers

from concurrency-specific errors [40, 93, 98], such as data races, atomicity violations,

determinism violations, and deadlocks (defined in Section 1.3 and Chapter 4).
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1.2 Dynamic Analysis

“Is my program correct?”

This is a central question when writing programs. What does it mean for

a program to be correct? It is not immediately obvious without additional semantic

information about the specific program. In order to check whether a program behaves

as expected, you need to know both what the program does and a specification of what

it should do.

The field of program verification and testing arises from the tension between an

executable program and a high-level program specification. Program specifications come

in many forms, ranging from informal comments or design documents, to executable unit

tests or assertions, to lightweight type annotations, to machine checkable statements in

a formal specification language.

Some specifications are general purpose, in that they apply to all programs.

General purpose specifications include statements like “programs should not have a seg-

mentation fault,” “programs should not deadlock,” or “programs should not have any

buffer overflow errors.” General purpose specifications are nice because they can be

encoded at the program checker level instead of at the program level. General purpose

specifications lead to general purpose program analysis systems; such systems are in-

creasingly used commercially (e.g. Coverity [43], FindBugs [60], JLint [82], PMD [117],

Klocwork [89]).

In general, checking if a program satisfies a specification is undecidable. Precise

or sound analyses do not report false alarms; every error reported by such analyses

represents a real error in the program. However, precise analyses achieve decidability

because they may miss some errors. Complete analyses find all errors in a program;

these analyses do not report false negatives, but may report false positives.

3



Static analysis involves analyzing the source code of a program; static type

checking can be viewed as a lightweight static analysis system. Static analyses have

potential for low precision, and so significant engineering effort must be devoted to

pruning false alarm counts. We believe that false alarms significantly degrade the utility

of analysis tools, implying that minimizing false alarms should be considered a key goal

when developing an analysis. For this reason, we are focusing on dynamic analysis.

Dynamic analysis involves analyzing the sequence of operations from a source

program as that program executes, also known as “online” or “on-the-fly” analysis (e.g.

Valgrind [110]). This sequence is called a trace. As a general rule, dynamic analyses have

an easier time minimizing false alarms, because of the presence of additional runtime

information. However, dynamic analysis may miss some errors; for example, unexplored

branches of conditionals are not visible at runtime. To overcome this limitation, dynamic

analyses may be run multiple times on different traces for the same program.

In general, concurrency errors are particularly difficult to discover with testing

– they typically manifest on rare thread schedules. Even after thousands or millions of

test runs, there may be no observed anomalous behaviour. Luckily, many concurrency-

specific errors violate general purpose specifications (e.g. “programs should not dead-

lock”) that can be efficiently checked by dynamic analysis.

Dynamic analysis is a potent tool for finding insidious concurrency errors in a

running program, without introducing too many false alarms, but is confined to analyz-

ing the observed trace. This dissertation is focused on advancing the state of the art of

dynamic analysis techniques for concurrency errors. In this dissertation, we specifically

focus on two common classes of errors: data races and atomicity violations.
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1.3 Data Races and Atomicity Violations

1.3.1 Data Race

When two accesses to the same shared variable occur by different threads and

at least one of them is a write, we say the accesses are clashing.1 A data race occurs

when there are two concurrent clashing accesses, i.e. without any ordering provided by

synchronization. The write and the other access are “racing” with each other, and the

result has scheduler-dependent non-determinism. For example, the BankAccount class

in Figure 1.1 does not have any synchronization: if two threads call the deposit method

at about the same time (as in the trace in Figure 1.2), the results may be surprising.2

Figure 1.1: Example Class BankAccount

1 class BankAccount {

2 long amount;

3

4 void deposit(int d) {

5 long temp = amount;

6 amount = temp + d;

7 }

8 }

Figure 1.2: Race Condition for BankAccount

Thread 1 Thread 2
r(amount)

r(amount)

w(amount)

w(amount)

1In some prior papers (e.g. [62, 139]), these accesses were referred to as “conflicting.” In this dis-
sertation, we use the term “clashing” instead since there is a conflicting definition of “conflict” in the
atomicity literature. See Section 7.3 of Chapter 7 for more information on clashes vs. conflicts.

2Our visual convention is that events occur top-to-bottom in the total order of the observed execution.
We use the standard syntax acq(l)/rel(l) for the acquisition/release of lock l, and w(x)/r(x) for
the write/read of variable x.
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Data races are a common and costly source of errors in multithreaded pro-

grams. They have been implicated in region-wide electrical blackouts [70], problems

during Mars Rover missions [102], and multiple deaths from radiation poisoning [94].

Although there has been some recent work focused on identification of “data race bugs”

instead of all races [88], the idea that it is possible to have a benign race is hotly

contested [4, 20].

Data races make concurrent software unpredictable and problematic because

the behaviour of a racy program reverts to being machine-dependent; racy programs

necessitate reasoning about low-level details such as the granularity of memory [21]. In

contrast, race-free programs have predictable and intuitive behaviour; they are easier

to understand and debug.

1.3.2 Atomicity Violations

Race-free programs may still exhibit unintended thread interference, because

race freedom is a low-level property dealing with memory accesses. That is, higher-level

semantic notions of thread non-interference are not addressed by race freedom.

Atomicity is a semantic non-interference property based on grouping blocks

of code together for easier reasoning. Informally, a block of code is atomic if, for all

executions of that code block (known as transactions), the effect of that execution can be

considered in isolation from the rest of the running program. In the database literature

this property is often called serializability [17]. In a serial trace, all transactions execute

without any interleaved operations by other threads. For example, accesses to the

deposit method in the trace in Figure 1.4 for the (corrected) BankAccount class from

Figure 1.3 are serial and hence atomic. In a serializable trace, although operations may

be interleaved with transactions, the trace is equivalent to (e.g. has the same behaviour

as) a serial trace. In other words, atomicity guarantees that a program’s behaviour can

be understood as if each atomic block executes without interference from other threads.
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Figure 1.3: Example Program BankAccount with Correct Synchronization

1 class BankAccount {

2 long amount;

3 Object mutex;

4

5 void deposit(int d) {

6 synchronized(mutex) {

7 long temp = amount;

8 amount = temp + d;

9 }

10 }

11 }

Figure 1.4: Trace for Corrected BankAccount

Thread 1 Thread 2
acq(mutex)

r(amount)

w(amount)

rel(mutex)

acq(mutex)

r(amount)

w(amount)

rel(mutex)

Atomicity coarsens the necessary reasoning about potential interleavings be-

tween threads to the level of atomic blocks instead of individual operations. Inside an

atomic block, simpler sequential reasoning may be applied to show correctness. Atom-

icity is used informally to organize and reason about multithreaded code; for example,

most Java methods are atomic [61].

An atomicity violation occurs when an outside thread “interferes” with the

operations inside an atomic block. For example, reading the same variable twice inside

an atomic block and getting different values because of an external update indicates an

atomicity violation. Even though each individual read may be protected by a lock, both

reads together should form part of a larger atomic action. A synchronized block is a

7



Figure 1.5: Example Program BankAccount with Synchronization

1 class BankAccount {

2 long amount;

3 Object mutex;

4

5 void deposit(int d) {

6 synchronized(mutex) {

7 long temp = amount;

8 }

9 synchronized (mutex) {

10 amount = temp + d;

11 }

12 }

13 }

Figure 1.6: Atomicity Violation for BankAccount

Thread 1 Thread 2
acq(mutex)

r(amount)

rel(mutex)

acq(mutex)

r(amount)

rel(mutex)

acq(mutex)

w(amount)

rel(mutex)

acq(mutex)

w(amount)

rel(mutex)

lock acquire, followed by a potentially empty sequence of operations by the same thread,

followed by a lock release. In Figure 1.5, although we have added synchronization to

the BankAccount class, thus removing the race on amount, the synchronized blocks are

not large enough to make the deposit method atomic. For example, the possible trace

in Figure 1.6 has many of the same unexpected results as in Figure 1.2. In Java, writes

to longs theoretically have the potential to be nonatomic,3 and so the synchronization
3In practice, writes do behave atomically on most modern hardware.
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in Figure 1.5 does provide some benefit. Although atomicity appears to necessitate

annotations that specify the atomic blocks, it is also possible to check for atomicity

violations at the level of all methods [61, 66] or all synchronized blocks [115].

1.4 Problem Space

In the previous discussion in Section 1.3.1, a data race is defined as two con-

current accesses to the same shared variable, where at least one of them is a write.

It can be difficult to tell whether two accesses could be concurrent, so previous race

detectors (described in Section 6.2.1) and atomicity analyses (described in Section 6.3)

have relied on a partial order called the happens-before (HB) relation to give an under-

approximation of when accesses are concurrent. This relation, originally developed by

Lamport [91], identifies dependencies within a program trace. The happens-before rela-

tion gives us a notion of trace equivalence, in that traces with the same happens-before

order exhibit the same behaviour.

Specifically, happens-before analyses attempt to discern when there has been

inter-thread communication that effectively orders two clashing accesses. Unordered

accesses are reported as a race, since there is no reason why they could not have occurred

at exactly the same instance. In its simplest form, happens-before is a partial order that

captures the logical ordering between operations in a multithreaded program’s execution

by:

• ordering all events by a single thread in the order they were actually observed

• ordering lock releases and subsequent acquisitions of the same lock in the order

they were observed

Under the assumption that threads can only communicate via mechanisms represented

in the happens-before order, this approach is precise. Although the simplistic defini-
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tion presented above only covers locks, other inter-thread communication (e.g. forking

and joining of threads or accesses to volatile variables) can be captured as happens-

before edges. The happens-before relation is discussed in more detail in Section 7.3 of

Chapter 7.

As an example of an execution trace with no race, consider Figure 1.7. As

before, our visual convention is that events occur top-to-bottom in the total order of

the observed execution and we use the standard syntax acq(l)/rel(l) for the acqui-

sition/release of lock l, and w(x)/r(x) for the write/read of variable x. In this trace,

all writes to x are protected by lock l and occur inside a synchronized block. The

happens-before relation contains an edge between the release of l by Thread 1 and the

acquire of l by Thread 2 (represented in the figure with an arrow). This edge reflects

the presence of a dependency between the two writes to x such that they cannot occur

at the same time.

Figure 1.7: Example where all access to x are protected by lock l.

Thread 1 Thread 2
acq(l)

w(x)

rel(l) PPPq
acq(l)

w(x)

rel(l)

As an example of a racy execution trace, consider Figure 1.8. In this trace,

the two writes to x do happen at essentially the same time. In fact, the happens-before

relation contains no dependencies between the two writes.

However, the same program that produced the trace in Figure 1.8 could have

easily produced the trace in Figure 1.9. In this trace, the writes to x are ordered under

the happens-before relation via an edge from the release of l by Thread 1 to the subse-

quent acquire by Thread 2. When considering the trace in Figure 1.9, it is intuitively

10



Figure 1.8: Example with a very simple happens-before race on x.

Thread 1 Thread 2
acq(l)

rel(l)

w(x)

w(x)

acq(l)

rel(l)

clear that the program that produced this trace contains a race. Unfortunately, the

happens-before relation is overly restrictive in this case.

Figure 1.9: Example with a certain race on x, but no happens-before race.

Thread 1 Thread 2
w(x)

acq(l)

rel(l) PPq
acq(l)

rel(l)

w(x)

The example from Figure 1.9 is at the crux of this dissertation. Even with only

the limited information of the dynamic trace produced from one run of a program, there

are situations where we can predict that another execution exists (as in Figure 1.8) that

contains a happens-before race.

This predictive intuition also holds for detecting atomicity violations. Recall

that a trace is serializable if it is equivalent to a serial trace. Previous dynamic atomicity

analyses use a cycle-based algorithm with transactions as nodes and report an error if

and only if the observed trace is not serializable [66]. Essentially, these algorithms

build transactional happens-before graphs to detect cycles, which correspond directly

to atomicity violations.

To illustrate prediction as applied to atomicity violations, consider the trace in

11



Figure 1.10. Here, beg(a) and end(a) demarcate the begin and end of an atomic block

(labelled a) within the execution trace. In this trace, Thread 1 is executing an atomic

block containing two synchronized blocks and Thread 2 is executing a single synchro-

nized block. Each synchronized block contains an unspecified (possibly empty) sequence

of operations denoted by “...”. As before, the vertical ordering of the statements of

the two threads reflects their relative execution order.

Figure 1.10: Observed Serial (Hence Serializable) Trace

Thread 1 Thread 2
beg(a)

acq(l)
...
rel(l)

acq(l)
...
rel(l)

end(a)

acq(l)
...
rel(l)

Clearly, this trace is serial and hence trivially serializable. A careful analysis

of this trace, however, shows that the synchronized statement of Thread 2 could have

been scheduled in between the two synchronized blocks of Thread 1; the original source

program that generated the trace of Figure 1.10 is also capable of generating the non-

serializable trace shown in Figure 1.11.

1.5 Research Question

Our central research hypothesis is:

Dynamic analysis can discover concurrency errors that do not manifest on
the observed trace.

12



Figure 1.11: Feasible Non-Serializable Trace

Thread 1 Thread 2
beg(a)

acq(l)
...
rel(l)

acq(l)
...
rel(l)

acq(l)
...
rel(l)

end(a)

In addition to the trace observed on one run of a program, many other feasible

traces exist that could be generated by a given program. The key idea explored by this

dissertation is identifying situations, like those described previously, where two syn-

chronized blocks could be reordered in an observed trace, even though they synchronize

on the same lock. Previous related online analyses (described in Chapter II) do not

consider reorderings of synchronized blocks on the same lock.

Figure 1.12: A trace where reordering the synchronized block on m could
lead to divergent behaviour.

Thread 1 Thread 2
w(x)

acq(m)

w(y)

rel(m) PPq
acq(m)

r(y)

rel(m)

w(x)

It is challenging to identify situations where synchronized blocks can be re-

ordered. For example, consider the trace in Figure 1.12. Despite the fact that the

accesses to x are not directly protected by any synchronization, it is not clear whether

the two writes to x can happen at the same time. If the read of y by Thread 2 were

13



Figure 1.13: Example with a certain race, but no happens-before race.

Thread 1 Thread 2
r(x)

acq(m)

r(y)

rel(m) PPq
acq(m)

r(y)

rel(m)

w(x)

to occur prior to the write of y by Thread 1, it could have read a different value. By

reading a different value, the subsequent operations by Thread 2 may be completely

different, e.g. if the read of y is used in the guard of a conditional. In particular, it is

possible that every trace in which the read of y by Thread 2 occurs prior to the write of

y by Thread 1 is race free. In contrast, the synchronized blocks containing the reads of y

in the trace in Figure 1.13 can be reordered without altering the program behaviour. If

we are able to predict, given an observed trace, that a race condition occurs on another

feasible trace, we say there is a predictable race. More diabolical examples of traces that

are not guaranteed to have predictable races are discussed in Part 12.

In this dissertation, we present causally-precedes, a weaker relation than the

happens-before relation, yet offering the same desirable features: CP leads to precise race

detection, and can be evaluated efficiently (in polynomial time). Multiple researchers

have fruitlessly pursued such a weakening of HB in the past [139]. We demonstrate

with numerous examples why it is not easy to weaken HB without introducing false

positives. A single CP-based race detection run discovers several new races, unexposed

by 10 independent runs of plain HB race detection.

We then develop a must-before relation that is not precise but enables online

prediction. We formalize a notion of must-before races that provides better coverage

than happens-before races. We develop a dynamic race prediction algorithm called
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Embracer for must-before races. We present experimental results showing that Em-

bracer detects 20-23% more races than a happens-before detector alone for reactive

programs.

We show how serializable traces can still reveal atomicity violations in the

original program and present SideTrack, a lightweight dynamic analysis tool that

generalizes from the observed trace to predict atomicity violations that could occur

on other feasible traces. We present experimental results showing that this predictive

ability increases the number of atomicity violations detected by SideTrack by 40%.

Despite performing online prediction, SideTrack offers performance competitive with

related dynamic atomicity analyses.

When developing SideTrack and Embracer, we discovered that it was dif-

ficult to test them. For example, test programs that contain data races may be non-

deterministic. To alleviate this difficulty, we present a methodology for deterministic

testing for dynamic analysis tools using trace snippets. This methodology involves a

language-agnostic domain-specific language (DSL) for describing trace behaviour, Tid-

dle. To use Tiddle, we present a compiler, implemented in Haskell, that translates

Tiddle traces into deterministic concurrent Java programs.
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Chapter 2

Organization

Before we become enmeshed in the details, let us describe the arc of this

dissertation. In the next two parts (Part II and Part III), we provide a foundation

for understanding and contextualizing the remainder of this dissertation. Following

this foundation, we present algorithms for predictive data race detection (Part IV and

Part V) and predictive atomicity violation detection (Part VI). We also present a

language for testing dynamic analysis tools (Part VII).

Part II comprises Chapters 3–6. This part is focused on contextualizing this

dissertation with other related work. We first describe some as yet implicit assumptions

about the concurrency and memory model used (Chapter 3). We then define some com-

mon concurrency errors, to enable the description of analyses for detecting such errors

(Chapter 4). Following these foundations and definitions, Chapter 5 is focused on meth-

ods for testing concurrent programs and program analyses. Finally, Chapter 6 contains

an overview of other analysis tools for detecting the concurrency errors identified.

After describing this context, we review a selection of technical background

(Part III, comprised of Chapters 7–9). We clarify semantics and terminology built upon

in subsequent chapters (Chapter 7 and 8) and describe the analysis framework used to

implement the tools presented in Part V and VI (Chapter 9).
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Part IV, comprised of Chapters 10–12, is focused on the causally-precedes

(CP) relation: a novel relation over the operations in a trace that is less restrictive

than the happens-before relation and so identifies more concurrent accesses.1 A precise

race detector can be built from this relation with polynomial complexity that does not

introduce false positives. Chapter 11 introduces the CP relation. The subtleties of CP

are illustrated through examples of diabolical traces in Chapter 12.

The CP relation is a major theoretical contribution to the field of dynamic

race detection. However, this relation is not easy to translate into a dynamic analysis

algorithm. Part V, comprised of Chapters 13–17, is focused on a novel dynamic analysis

algorithm for race prediction.2 Even when the observed trace is race-free, this algorithm

predicts if a race may occur on another, similar trace from the same program. This

algorithm is not guaranteed to be sound, but enables online prediction. We present

the predictive must-before (MB) relation in Chapter 14, and a race detection algorithm

built from this relation (Embracer) in Chapter 15. We discuss the implementation of

Embracer in Chapter 16 and evaluate this implementation in Chapter 17.

In Part VI, comprised of Chapters 18–22, we focus on dynamically detecting

atomicity violations in traditional multithreaded programs.3 Even if the observed trace

is serializable, our online analysis can still infer that the original program can generate

other feasible traces that are not serializable. We present the SideTrack analysis

(Chapter 20) along with a practical implementation (Chapter 21) and evaluate this

implementation (Chapter 22).

Part VII, comprised of Chapters 23–24 is focused on Tiddle: a language-

agnostic domain-specific language (DSL) for describing trace behaviour. Tiddle can
1This work was originally presented at the 2012 Symposium on Principles of Programming Languages

(POPL) [139] and was developed jointly with Yannis Smaragdakis, Jacob Evans, Jaeheon Yi, and
Cormac Flanagan.

2This work was developed jointly with Jaeheon Yi and Cormac Flanagan.
3This work was originally presented at the 2009 Workshop on Parallel and Distributed Systems:

Testing, Analysis, and Debugging (PADTAD) [171] and was developed jointly with Jaeheon Yi and
Cormac Flanagan.
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be used to generate deterministic tests for validating dynamic analysis tools.4 Chap-

ter 23 introduces Tiddle and highlights the use cases for this language. Chapter 24

describes the Tiddle grammar and compiler.

Finally, in Part VIII (consisting of Chapter 25), we highlight some areas for

future work. This dissertation also includes two appendices of material that is repro-

duced here for convenience: Appendix A contains experimental results for CP-based

race detection and Appendix B contains the soundness proof for the CP relation [139].

Part X contains the bibliography.

4This work was originally presented at the 2009 International Workshop on Dynamic Analysis
(WODA) [127] and was developed jointly with Jaeheon Yi.
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Part II

Related Work
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Chapter 3

Concurrency and Memory Models

3.1 Concurrency Model

At a low level, multiprocessor systems often involve explicit multiple threads

of control that can access the same data (shared memory). Multithreading with shared

memory is the most popular of three dominant concurrency models at the language level,

and is the concurrency model for the analyses described in this dissertation. This model,

though popular, is very difficult to reason about [93] Programs can also be structured

to map operations onto disjoint data (data parallelism) or use messages to communicate

without sharing memory directly (message passing). Many of the concurrency errors

discussed in subsequent sections could be prevented by adoption of a concurrency model

that does not involve shared memory;1 further discussion of alternate concurrency mod-

els is beyond the scope of this dissertation. Since multithreading and shared memory

are components of mainstream languages like Java and C#, this concurrency model is

very widely used and will be a feature of legacy code for the foreseeable future.
1These other models also have limitations. Data parallelism works well for divide-and-conquer type

problems, and less well for other problem structures. Message passing programs may contain timing
bugs; for example, in a language with asynchronous message passing, one thread may wait forever for
a message that was previously sent by another thread.
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3.2 Memory Models

A trace describes the operations performed by an executing program. For

single-threaded programs, a trace is inherently sequential and forms a total order on

program operations. For multithreaded programs, a trace is actually a partial order

over program operations; operations by different threads may happen at essentially the

same time. However, the dynamic analyses presented in the dissertation take as input

a representative total order over the program operations by all threads.

A memory model defines the values that may be obtained by a read operation

in a trace. A memory model can be viewed as a contract between the programmer, com-

piler, and hardware about what sorts of reorderings and optimizations are acceptable.

Sequential consistency is the most intuitive memory model in that every read opera-

tion will observe the value stored by the last write. A relaxed memory model is one

where the observational ordering constraint is relaxed to facilitate certain performance

optimizations, such as those enacted by the compiler and hardware. The Java Memory

Model [99] is an example of a relaxed memory model.

In Java, programs without happens-before data races follow sequential consis-

tency. The tools presented in Parts IV and V will report a happens-before race if one

exists. If there are no happens-before races in a trace, these tools can leverage sequential

consistency as an assumption when predicting races for that trace.
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Chapter 4

Concurrency Errors

In Section 1.3 of Chapter 1 we defined race conditions and atomicity viola-

tions. The mere presence of data races is enough to break the guarantee of sequential

consistency on most hardware platforms. While atomicity is related to the notion of

race-freedom [111], these two correctness properties provide complementary guarantees.

Race-freedom guarantees that the program behaves as if executed on a sequentially-

consistent memory model [5], while atomicity guarantees that each atomic block behaves

as if executed serially.

This dissertation is focused on atomicity violation and data race detection,

although there are other potential concurrency errors in multithreaded programs. In

this chapter we outline three additional concurrency-specific errors which programmers

need to contend with. All of these errors cause concurrency bugs, and programmers

need to reason about these types of errors to ensure their code is correct.

4.1 Cooperability Violations

One major problem with atomicity as a central correctness property is that

atomicity only gives you guarantees about code that is inside atomic blocks. Code
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that is outside of atomic blocks is subject to preemptive reasoning, in which a context

switch may occur at any program point. In other words, atomicity enforces a bimodal

sequential/preemptive reasoning; code inside of atomic blocks has simpler sequential

reasoning than code outside of an atomic block.

Instead of specifying atomic code sections where interference should not occur,

cooperative semantics permits context switches only at explicitly marked yield annota-

tions. Cooperative semantics allows for mostly intuitive, sequential reasoning, except

at specific yield annotations.

Since only allowing context switches at yield points would be excessively re-

strictive, the correctness criterion of cooperability [170] is that code executes as if con-

text switches happen only at specific yield points. Thus, even though cooperable pro-

grams execute under preemptive semantics, we can reason about their correctness as if

they execute under a cooperative semantics.

The example in Figure 4.1 illustrates these concepts. The Ticket class has

a buggy valuate() method that is unsafe under different thread interleavings. The

two yield annotations in the program represents all observable interference, and so the

program is cooperable. The two traces represent program execution under preemptive

and cooperative scheduling; their behavior is equivalent. The property of cooperability

allows us to reason about the buggy behavior of trace (a) using the cooperative trace

(b).

4.2 Determinism Violations

Determinism is a key property when dealing with concurrency. The impor-

tance of determinism is understandable; non-determinism is what makes other types

of concurrency errors both problematic and difficult to detect. For deterministic pro-

grams, which always behave the same given a particular input, it is not necessary to
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Figure 4.1: A cooperable program with two equivalent traces.

1 class Ticket {

2 float value;

3 public void valuate() {

4 float tmp1 = value * 0.10;

5 /* yield; */

6 float tmp2 = value + tmp1;

7 /* yield; */

8 value = tmp2;

9 }

10 }

Thread 1 Thread 2
rd value

rd value
wr tmp1

wr tmp1
yield

yield
rd tmp1

rd tmp1
rd value

rd value
wr tmp2

wr tmp2
yield

yield
rd tmp2

rd tmp2
wr value

wr value

(a) A preemptive
scheduling

Thread 1 Thread 2
rd value
wr tmp1
yield

rd value
wr tmp1
yield

rd tmp1
rd value
wr tmp2
yield

rd tmp1
rd value
wr tmp2
yield
rd tmp2
wr value

rd tmp2
wr value

(b) An equivalent
cooperative
scheduling

reason about particular thread schedules. For example, if the result of a data race is

deterministic (e.g. two threads writing the same value to a variable), then the data race

itself is benign; the result of the race does not matter.

Even if an entire program is not deterministic, subcomputations may be.

Atomicity violations are problematic because they break the determinism of the op-

erations making up an atomic block.
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4.3 Deadlocks

Many solutions to fix concurrency errors like atomicity violations or data races

involve adding additional synchronization to a program. Care needs to be taken with

the introduction of synchronization, or deadlock can occur. Deadlocks result from at-

tempted cyclic lock allocation between at least two threads. For example, if one thread

attempts to acquire lock A followed by lock B whilst another thread attempts to acquire

lock B followed by lock A, both threads may block indefinitely waiting for a lock to be

released.

Deadlocks, like other concurrency errors, may not manifest under testing.

However, whereas data races, atomicity violations, cooperability violations, and deter-

minism violations can cause insidious anomalous behaviour that may or may not crash

the executing program, the manifestation of a deadlock is typically more obvious. For

example, if all threads are deadlocked, CPU usage drops down to 0% and the program

stops in its tracks. Deadlock detection and repair tends to be more straightforward than

race detection.
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Chapter 5

Testing and Concurrency

Before we present work related to program analysis for detecting concurrency

errors, we first review a selection of the work related to concurrency testing in specific.

All of the work presented in this chapter is orthogonal to the program analysis techniques

introduced by this dissertation and described in Chapter 6. Dynamic program analysis

typically relies on tests to run the program (and produce a trace). Also, the techniques

described in this chapter are often combined with program analysis techniques (such

as those described in Chapter 6), so as to identify specific classes of concurrency errors

whilst testing programs. For example, a developer may want to verify that there are no

data races while running a test.

There have been two main directions for testing concurrent programs. Some

systems attempt to explore the space of possible schedules to find more bugs. These

can easily be combined with program analysis tools, for example to increase coverage of

dynamic analyses. Other systems focus on controlling nondeterminism in tests, either

through scheduling annotations or via deterministic replay. Some of these techniques

also extend to testing program analyses.1

1In Part VII we will elaborate on Tiddle: a language for describing program execution traces which
serve as test inputs for dynamic analyses.
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5.1 Scheduler-Driven Approaches

Dynamic analyses run over a particular execution trace, and so can be com-

bined with a system which explores multiple schedules to cover a larger variety of pro-

gram traces. Systems which explore the space of possible schedules fall into three main

groups.

Model Checking Direct execution model checking involves repeatedly running a pro-

gram until all possible interleavings have been explored; this approach would find all

errors on all feasible traces if run to completion. This approach suffers from scalabil-

ity concerns due to an explosion of potential state spaces to explore. Java PathFinder

[158] is a stateful direct execution model checker implemented as a Java virtual ma-

chine. CHESS [105, 106, 107] is a stateless direct execution model checker that uses

iterative context bounding (i.e. prioritizing schedules with fewer context switches) as

an exploration heuristic and also as an effective coverage metric. Gambit [42] lever-

ages a combination of heuristic-based exploration followed by systematic checking to

provide both fast likely bug detection and good coverage. Alpaca [125] unit tests

check for concurrency-specific errors (such as race conditions or deadlocks), control

scheduler-dependent non-determinism, and run the unit tests on different thread sched-

ules. Alpaca unit tests are built off of CHESS. Other researchers have also explored the

combination of unit tests (JUnit) and model checking (JPF) [148], although Alpaca is

the most robust system to do so.

Fuzzing The second strategy primarily uses heuristics to drive exploration to inter-

esting schedules. Noise-makers insert sleep() or yield() statements at heuristically-

chosen points [49]. Fuzzing [134, 26] involves using a combination of randomized schedul-

ing and directed scheduling to attempt to schedule concurrency errors like data races

and atomicity violations. Though fuzzing does not have the scalability concerns of

27



model checking, it is nondeterministic and not guaranteed to find all possible errors.

Stress Testing In contrast, stress testing systems make no attempt to control the

scheduler directly. Automatic or semi-automatic systems make it easy to run multiple

copies of a test simultaneously on different threads [75]. A tool for unit testing concur-

rent business code [122] provides support for specifying which methods should be run

concurrently, without requiring manual management of threading. Ricken et al. [123]

present ConcJUnit: a framework built off of JUnit [85] that ensures that all threads

spawned in unit tests terminate and that failing assertions or exceptions in any thread

cause a test to fail. This framework leverages JUnit support for running multiple in-

stances of tests. Since stress testing techniques, such as ConcJUnit tests, do not control

scheduling, they may be nondeterministic and are not guaranteed to report all errors.

5.2 Deterministic Tests

Deterministic testing could be used to ensure that the results from a dynamic

analysis run are repeatable. Unfortunately, deterministic testing strategies tend to have

a high overhead. Two popular strategies exist for reproducible, deterministic, testing.

Replay systems focus on re-execution of observed traces. Annotation-based systems

allow programmers to explicitly specify desired schedules. An alternative strategy is to

validate the determinism of a test (see Section 6.5).

Annotation-based Annotation-based systems are used for writing small (e.g. unit)

tests. For larger tests the scheduling is too complex to effectively annotate.

MultithreadedTC [121] is a framework that allows programmers to encode

scheduling information inside of unit tests. An external clock is added to the tests,

along with a thread responsible for clock maintenance and deadlock detection. Test

snippets can block waiting for clock ticks or assert when a tick has happened; ticks
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occur when all threads in the system except the maintenance thread are blocked. The

trace of operations is not made explicit in this system, and so it is possible to acciden-

tally generate nondeterministic tests. MultithreadedTC was inspired by ConAn [97],

a script based testing framework that also uses a clock ticks to enforce specific inter-

leavings. Other researchers have proposed support for explicit specification of sets of

schedules [79].

IMUnit [78] introduces a framework which allows developers to name particular

code points (events) and define specific schedules involving those points, using Java

annotations. Developers can also refer to named threads in these schedules. This

framework can be used to control scheduling in unit tests, or to verify whether a specific

execution matches a schedule. The authors also developed an Eclipse plugin which can

be used to migrate sleep-based unit tests to the new system.

Deterministic Replay There is variety of prior research on deterministic replay of

multithreaded applications [29, 37, 124, 133].2 Essentially, these systems record infor-

mation about thread scheduling so that a buggy execution trace can be replayed after a

crash occurs. Without a replay system in place, it may be difficult to reproduce failures;

different interleavings may not result in an error state. ConTest [49] combines replay

with noise-making in one framework. One problem with replay-based methods is that

once code has been modified, the logged schedule may no longer be valid. If this sched-

ule is not transparent to programmers, it may be difficult to understand why a test can

no longer be replayed. Another issue is that replay systems rely on a log of program

events. This log is typically expensive (both in terms of time and space) to collect and

to use during reply.
2Other replay systems exist for Java [84, 146], but here we are focused on replay systems targeted

at concurrency.
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5.3 Describing Program Traces

There has been some previous work on describing program traces for various

purposes. A formal look at trace models of Prolog programs is explored in [80] for build-

ing high-level Prolog debuggers. Several authors have looked at simplifying, organizing

and abstracting stored traces [25, 31]. The Test Behaviour Language (TBL) for traces

provides a concise way of describing and testing for trace properties [31]. Various tem-

poral logics can express bug patterns [22] or other arbitrary properties [44], and runtime

verification systems [33] may monitor traces for violations of patterns and properties.

Some previous work uses traces to describe patterns. Generated traces that

exhibit a statistical profile are used to test architecture performance characteristics [50].

Traces are mined for patterns of procedure calls [72].

5.4 Concurrency Benchmarks for Research

There has been a recent drive to create a benchmark of concurrency bugs,

targeted at dynamic analyses [54, 55]. Eytani et al. claim that their benchmark has

had an impact on the research community, and is now used by several groups. The

concurrency bugs in the benchmark follow different bug patterns, but were mostly found

in programs written by novices.

In TMUnit [73], a simple description language is used to generate workloads

and test the semantics of transactional memories. The user specifies threads, transac-

tions and their schedules to test a particular interleaving on a Software Transactional

Memory (STM) system. The user can also specify invariants to be checked at each stage

of the run.3 Harmanci et al. validate their work by testing five STM systems. This

work highlights the relevance of a trace DSL beyond dynamic analysis frameworks.

3In contrast, specifications in Tiddle (Part VII) of whether or not the dynamic analysis flags an error
exist at a level above the Tiddle program itself.
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Chapter 6

Detecting Concurrency Errors

As outlined in Chapter 1, developers use a variety of general purpose spec-

ifications, such as “programs should not deadlock,” when reasoning about their pro-

grams. General purpose specifications are amenable to program analysis. This chapter

overviews a variety of analysis tools for concurrency-focused general-purpose specifica-

tions. Specifically, we review analysis tools that detect the concurrency errors presented

in Chapter 4.

6.1 Predictive Approaches

There is selection of prior theoretical work related to predictive and generaliz-

ing concurrency analysis [52, 59, 86, 138, 90, 87, 142, 163, 164, 166]. However, most of

this work suffers from problems with precision and scalability. This work also typically

involves incorporating the results of static analyses.

The most relevant prior concurrency error prediction work to this disserta-

tion is based on a concept called sliced causality [34, 35, 36, 129, 136]. Sliced causality

makes use of a priori control- and data-flow dependence information to obtain a reduced

“slice” of a trace targeted towards a particular variable. For example, a race condition
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on x is predicted with sliced causality by logging only operations relevant to accessing x

in a program slice and model-checking all feasible slice permutations in a post-mortem

analysis phase. These permutations are feasible because one may infer and ignore ir-

relevant operations via static dependence information; the precision of the predictions

follow from the feasibility of the trace permutations generated. Sliced causality requires

a separate trace prediction phase for each observed variable, is limited by the length of

the logged slice, and critically depends on a whole-program static analysis to preserve

precision of predictions.

We further discuss the most related predictive approaches for data race detec-

tion in Section 6.2.4 and atomicity violation detection in Section 6.3.1.

6.2 Race Detection

Several static approaches exist to deal with data races. Type systems [2, 24,

69, 130] and languages [14] have been proposed to prevent races in programs. Other

static approaches include Warlock [145] and Locksmith [120] for ANSI C programs, scal-

able whole-program analyses [109, 162] and dataflow-analysis-based approaches [48, 53].

Aiken and Gay [9] also investigate static race detection focusing on SPMD programs.

As mentioned previously, all of these approaches suffer from many false positives.

Post-mortem techniques [6, 39, 124, 149] for detecting races involve dynamic

logging of operations that are then analyzed offline. These techniques may have scala-

bility problems for programs that run for a long time. In particular, the logged trace

size (and hence time to analyze the trace in the offline phase) may grow very large.

Some initial dynamic analyses for race detection were proposed in [46, 132];

today there are three main approaches. Precise detectors are based on happens-before

analysis of the program trace [41, 62, 104, 118, 132]. Efficient but imprecise detectors

are based on checking whether variables are consistently protected by the same locks [8,
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38, 112, 131, 160]. Hybrid approaches combine happens-before analysis and locksets [51,

113, 119, 173].

6.2.1 Happens-Before

Numerous race detection tools are based on Lamport’s happens-before (HB)

relation [15, 41, 62, 104, 118, 132].1 These tools are more precise than lockset-based

race detectors (discussed in the following subsection) but are often less efficient.

The most efficient happens-before race detectors use vector clocks [103] to

compactly track the happens-before relation on operations within a trace. A vector

clock gives a relative impression of program timing by mapping thread identifiers to

integer clocks. If k is the vector clock for an operation a in a trace, then k(t) identifies

the operations of thread t that happen-before a. Vector clocks are discussed in more

detail in Chapter 8.

TRaDE [41] uses accordion clocks, vector clocks that shrink when all objects

referenced by dead threads have been garbage collected, along with dynamic escape anal-

ysis (which determines the scope of pointers), to boost performance. The djit+ [118]

algorithm is an efficient happens-before vector clock algorithm that obviates the need

for expensive full vector clock comparisons in special situations (e.g. when a thread

reads the same variable twice in a row) for a 2-3x performance improvement. Fast-

Track [62] improves upon djit+by using an adaptive lightweight representation for

the happens-before relation and by introducing optimized constant-time fast paths that

account for approximately 96% of operations encountered in a trace, and provides a

2.3x performance improvement over djit+. This performance gain puts FastTrack

on par with lockset-based tools.
1The happens-before relation is briefly described in Section 1.4 of Chapter 1 and is discussed in more

detail in Section 7.3 of Chapter 7.
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6.2.2 Lockset Approaches

A lockset for a shared variable is the set of locks that consistently protect

access to that variable. Locksets were introduced [47] as an alternative representation

to the happens-before analysis. Later, locksets were used alone as an efficient technique

for data race detection in Eraser [131]. Unfortunately, programmers use a variety of

different synchronization idioms to protect shared variables. Eraser gets many false

positives caused by variables which are not consistently protected by the same lockset,

yet are race free (e.g. using semaphore-based synchronization).

Figure 6.1: Example of no race on variable y.

Thread 1 Thread 2
w(y)

acq(l)

w(x)

rel(l) PPq
acq(l)

r(x)

r(y)

rel(l)

Consider, for instance, the example execution in Figure 6.1. Although the

two accesses to shared variable y do not occur with the same lock held, they are well-

ordered—the second access only occurs after Thread 2 has observed a value written by

Thread 1. It is quite possible that, if the two critical sections over lock l had been

swapped, Thread 2 would not have attempted to read y since its read of x would have

yielded a different value. In contrast, the inter-thread happens-before edge (shown as an

arrow), together with the transitivity of the happens-before partial order, ensure that

no happens-before race is reported by ordering the accesses to y.

Lockset-based approaches tend to be efficient, but are susceptible to high false

alarm rates. Moreover, they are not well-suited for providing specific traces that lead
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to the occurrence of a race condition.

Various refinements and extensions for Eraser have been proposed. Static

escape analysis can improve performance [112, 160]. Reasoning about races at the

object level instead of the memory word level [160] improves performance but leads

to more false alarms. The lockset technique was also extended with timing thread

segments [74] to reduce false positives caused by data not being protected by a lock

during an initialization phase. Further performance enhancements use whole-program

static analysis to reduce the amount of instrumentation necessary [38] or involve type

inference [8]. Eraser’s algorithm has also been implemented with AspectJ [19].

6.2.3 Hybrid Techniques

Recent work on dynamic data race detection has focused on combining locksets

and happens-before analysis. These approaches leverage locksets for increased efficiency,

but may introduce false positives. O’Callahan and Choi [113] developed a two-phase

localization scheme; a first pass lockset analysis filters out problematic fields for a sec-

ond pass hybrid analysis. RaceTrack [173] uses a happens-before analysis to estimate

whether threads can concurrently access a memory location so as to reduce false positives

caused by empty locksets. MultiRace [119] presents improved versions of happens-before

and lockset algorithms. Locksets can also enable happens-before approaches to report

additional warnings and reduce the number of vector clock comparisons needed in the

happens-before analysis. Goldilocks [51] combines locksets and happens-before in an

unusual way by using locksets to efficiently track the happens-before relation. This pre-

cise, complicated analysis is embedded in a Java virtual machine to enable continuous

monitoring of race conditions.
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6.2.4 Predicting Data Races

Prior work focused on predictive data race detection is grounded in the context

of happens-before race detection [32, 34, 35, 135, 137]. The main idea of this body of

work is to consider which of the correct reorderings of critical sections would have

triggered a race in a happens-before detector. The problem with a reorderings-based

approach is that it requires exploring all reorderings of critical sections to determine

which ones are correct and produce a race. This exploration is an expensive process:

the space of possible reorderings is exponential and executions with races are often hard

to discover. Such work is typically a hybrid of testing and model checking and does not

achieve the polynomial complexity and scalability of the relation presented in Part IV.

For instance, in the recent work by Said et al.[129], scalability relies on a modern SMT

solver and an efficient encoding of the problem.

Among the body of work focused on dynamic race prediction, the jPredictor

tool [36], based on the idea of sliced causality discussed in Section 6.1, is distinguished

by explicitly producing a polynomial algorithm for race detection. Nevertheless, in or-

der to do so, jPredictor abandons the general precision guarantees of the theory that

underlies it. The main soundness theorem of the jPredictor work (which applies to

more than race detection) states that every produced “consistent permutation” corre-

sponds to a possible program execution. Nevertheless, “generating all the consistent

permutations of a partial order is a #P-complete problem” [36]. To avoid an exponen-

tial search, jPredictor employs two shortcuts for the case of race detection. The first

is avoiding a search of permutations: events are processed following the order of the

original execution. For predictive power, jPredictor relies on an unsound definition of

what constitutes a race (Definition 5 of [36]). This definition adapts (to sliced causality)

the lockset criterion for race detection: two clashing, sliced causality-unordered accesses

that occur without holding a common lock are considered to race. The second shortcut
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is in the implementation, which performs a single slicing traversal of the trace, also

resulting in unsoundness.

6.3 Atomicity

A variety of tools have been developed to detect atomicity violations, both

statically and dynamically. Static analyses for verifying atomicity include type sys-

tems [64, 65, 165] and techniques that look for cycles in the happens-before graph [56] or

def-use graphs [168]. Compared to dynamic techniques, static systems provide stronger

completeness guarantees but typically involve trade-offs between precision and scalabil-

ity.

Dynamic techniques analyze a specific executed trace at runtime. Artho et

al. [11] developed a dynamic analysis tool to identify one class of “higher-level races”

using the notion of view consistency. The Atomizer [61] uses Lipton’s theory of reduc-

tion [96] to check whether steps of each transaction conform to a pattern guaranteed to

be serializable. Wang and Stoller developed an alternative block-based algorithm [167]

and also more precise commit-node algorithms [166]. Another method of detecting

atomicity violations is by matching against 11 known violation patterns [157].

Velodrome [66] was the first dynamic atomicity analysis to find all errors on

a particular trace without introducing false positives. This precise dynamic atomicity

analysis uses a cycle-based algorithm with transactions as nodes and reports an error

if and only if the observed trace is not serializable. Velodrome uses transactional

happens-before graphs to detect cycles, which correspond directly to an atomicity vi-

olation. SideTrack (Part VI) uses a similar transactional happens-before algorithm

to predict atomicity violations. Farzan and Madhusudan [57] provide space complexity

bounds for a similar analysis.
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Scheduling Atomicity Violations Sen and Park [115] have developed a tool called

AtomFuzzer that attempts to schedule atomicity violations so that it is straightforward

to determine if the atomicity violation represents a real error. When a thread is about

to acquire the same lock a second time, AtomFuzzer pauses the thread (with probability

0.5), and tries to schedule another thread (which may cause an atomicity violation) first.

If all threads are paused, one thread is chosen to continue. AtomFuzzer may miss some

errors because it is not always possible (or desirable) to pause every thread as long as

necessary at a vulnerable point, but may also shape a particularly useful execution trace

through scheduling.

Software Transactional Memory Software transactional memory [92] is a program-

ming model proposed as an alternative to lock-based concurrency, where the run-time

system ensures the atomic execution of transactions. This approach involves forcing

programmers to use a new programming paradigm, and does not easily apply to legacy

code. Some recent work has been devoted to addressing the semantic difficulties of

software transactional memory [140] and making it compatible with lock-based pro-

gramming [141, 156]. Software transactional memory enforces the atomic execution of

transactions, while atomicity uses program analysis to guarantee that atomic blocks

always execute as if in such a transaction.

6.3.1 Predicting Atomicity Violations

Several recent papers have addressed predicting atomicity violations (in par-

ticular) from an observed trace. Most predictive approaches are based on leveraging

static control- and data-flow information and suffer from efficiency concerns. Farzan

and Madhusudan [58] predict runs from program models based on profiles and check

serializability of the predicted runs.

Another interesting predictive approach consists of permissive reordering mod-
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els on executions.2 Past work [59, 86] assumes that threads only communicate via

holding locks, and not by writing to shared memory locations. Any trace that holds

the same locks in the same order of nesting is considered an appropriate generalization

of the observed behavior in that predictive model. The Penelope [142] system then

adds soundness back by trying to reproduce the predicted atomicity violation through

changes to the scheduling of a real execution. The published experiment numbers imply

that their approach does not scale at or near the level of the algorithms presented in

Part IV, V, and VI and can suffer from high costs in small yet complex executions.

Combinations of approaches along these lines should be interesting future work.

6.4 Cooperability

The notion of cooperability, where code executes as if context switches happen

only at specific yield points, was partly inspired by recent work on automatic mutual

exclusion, which proposes ensuring mutual exclusion by default [1, 3, 77]. The relation-

ship between cooperability and automatic mutual exclusion is analogous to that between

atomicity and transactional memory. Cooperative semantics have been explored in var-

ious settings; for example in high scalability thread packages [159] and as alternative

models for structuring concurrency [7, 10, 23]. There is also a type and effect system

for cooperability [169, 170], a dynamic analysis tool [172], and a user evaluation [128].

6.5 Determinism

Checking for semantic determinism is pretty tricky. For the most part, multi-

threaded determinism checkers are focused on verifying that alternate schedules do not

change behaviour, instead of dealing with things like random number generation.
2These models can be more permissive than the correctly-reorders relation (Definition 7 in Chap-

ter 11) or the approach taken by SideTrack (Part VI).
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Dynamic checkers for determinism verify that the observed trace could not

be rearranged to change behaviour but are limited by the observed trace. Single-

Track [126], a deterministic parallelism analysis tool, checks serializability of multi-

threaded transactions that are also verified to be free of internal conflicts (thus guaran-

teeing determinism at the transaction level). This work can be viewed as an extension

of atomicity, and in fact reduces to atomicity detection if all transactions are single-

threaded. If there is only one transaction, then SingleTrack acts as a determinism

checker.

Another issue with checking for determinism is defining when exactly two

executions have the “same” behaviour. For example, rounding errors in arithmetic

operations involving floating point numbers may cause multiple executions of the same

code to end up with very slightly different results. Burnim et al. present an assertion-

based mechanism for checking determinism, where bridge assertions can be used to

relate different executions of the same program [27, 28].

Enforcement schemes for determinism, which ensure consistent behaviour at

the expense of some efficiency, also exist [114], as well as type and effect systems [18].

There is the potential for practical operating-systems-based enforcement of determin-

ism [13] or even for hardware-based enforcement of determinism [45].

6.6 Deadlock Detection

The main way to avoid deadlocks is to have a consistent order for acquiring

locks. Type systems exist for specifying partial orders over locks in a program [24].

There are also a few well-known static analysis systems for deadlock detection. For

example, RacerX [53] constructs a graph of lock orderings and checks for cycles. An

award-winning recent paper on static deadlock detection [108] abstracts six necessary

conditions for deadlock freedom, and then uses separate analyses for each of those six

40



conditions.

Dynamic analyses for deadlock detection reduce (but do not eliminate) false

positives with a dynamic lock ordering graph [16]. Potential deadlocks reported by

dynamic analysis can also be used to drive the scheduler towards deadlock manifesta-

tion [83].
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Part III

Technical Background
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Chapter 7

Semantics

We begin by formalizing the notion of multithreaded program traces, which

serve as the input to our dynamic analyses. A program consists of a number of concur-

rently executing threads that manipulate shared variables x ∈ Var and locks m ∈ Lock .

Each thread has a thread identifier t ∈ Tid . A trace α captures an execution of a

multithreaded program by listing the sequence of operations performed by the various

threads. We use the shorthand notation a ∈ α to convey that operation a appears in

the trace α. The set of operations that thread t can perform include:

• r(t, x, v) and w(t, x, v), which read and write a value v from variable x; and

• acq(t,m,) and rel(t,m), which acquire and release a lock m.

Our implementations also support a variety of additional operations such as fork, join,

wait, notify, and access to volatile variables. We omit the value from read and write

operations if it is not relevant.1

This lower level abstraction of traces allows us to ignore objects and their

composition; more complicated concurrency bugs boil down to short sequences of these

basic operations. We refer to the actual trace perceived by our analysis tool as the
1When illustrating program traces, we adopt the convention from Figure 1.7 where the thread iden-

tifier is above instead of inside the operations by that thread.
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observed trace. In addition to the observed trace, many other feasible traces exist for a

given program. It is not generally possible to predict all feasible traces for a program

without additional static information; for example, the observed trace may not have

complete code coverage for the source program. The notion of trace feasibility directly

relates to the precision of predictive dynamic analysis tools. For example, if a precise

predictive race detector flags a race on a trace, then a feasible trace exists that contains

a happens-before race. Note that it may be possible to prove that a feasible trace exists

satisfying a certain property without actually producing such a feasible trace. If we are

able to predict, given an observed trace, that a potential concurrency error (such as

a data race or atomicity violation) occurs on another feasible trace, we say there is a

predictable concurrency error.

7.1 Trace Evaluation

For illustration purposes, this section contains a further formalization of trace

evaluation. Trace evaluation, a concept from operational semantics, clarifies how to

figure out the program state after a trace is executed. Each operation in a trace has a

unique index into that trace. For example, to distinguish between two identical reads

of x in a trace, this index would be useful. A trace is a sequence of operations such that

the indices start at 0 and the index of each operation is 1 greater than the index of the

previous operation. To reduce notational clutter, these indices are elided.

The meaning of each operation a is defined by the trace evaluation relation

Σ →a Σ′, where the program state Σ maps variables to values, and also maps each

lock to a thread identifier, or to ⊥ if that lock is not held by any thread. The relation

Σ→a Σ′ describes how the state Σ is updated to Σ′ by each operation a, as formalized

by the rules in Figure 7.1. This figure uses standard operational semantics terminology

where events above the line are preconditions to results below the line. For example, the
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rule [acq] states that no thread holds the lock directly before the acquire operation and

the acquiring thread holds the lock directly afterwards. The notation Tid⊥ refers to the

union of the space of thread identifiers and ⊥, which is used when no thread currently

holds a particular lock. The extension of this relation from individual operations a to

traces (or operation sequences) α is straightforward.

Trace evaluation starts in the initial state Σ0 where all variables are zero-

initialized and all locks are initially not held by any thread:

Σ0 = (λx.0) ∪ (λm.⊥)

We also assume a helper function for extracting the thread identifier from an operation:

tidof : Operation→ Tid

And a helper function for extracting the (implicit) index from a trace operation:

idof : Operation→ N

7.2 Well-Formed Traces

We are concerned with the traces produced from an actual run of a source

program. Our assumptions include the well-nesting of locks, as well as standard lock

semantics.

In a well-formed trace, every release operation has a matching acquire opera-

tion by the same thread earlier in the trace, with no intervening acquires of that lock.

This restriction is also captured in Figure 7.1. To explicate this relationship between

matching acquire and release operations, we sometimes annotate each acquire/release
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Figure 7.1: Multithreaded Program Traces

Domains

t, u ∈ Tid
x, y ∈ Var
v ∈ Value

l,m ∈ Lock
a, b ∈ Operation ::= r(t, x, v)

| w(t, x, v)
| acq(t,m)
| rel(t,m)

α, β, γ ∈ Trace = Operation∗

Σ ∈ State = (Var 7→ Value) ∪ (Lock 7→ Tid⊥)

Trace Evaluation

[read]

Σ(x) = v

Σ→r(t,x,v) Σ

[write]

Σ→w(t,x,v) Σ[x := v]

[acq]

Σ(m) = ⊥
Σ→acq(t,m) Σ[m := t]

[rel]

Σ(m) = t

Σ→rel(t,m) Σ[m := ⊥]

pair with a unique label k; so that acqk(t,m) is matched with relk(t,m), and vice versa.

We also assume locks are not re-entrant.2 A trace is closed if every acquire

operation has a matching release. A synchronized block is a sequence of operations by

a thread starting with an acquire operation and ending with a matching release. We

assume that traces are well-nested, in that any synchronized block has no locking side

effect.

Definition 1 (Well-Formed Trace). A well-formed trace is a total order of events such

that

1. Acquisition of a lock is not followed by another acquisition of the same lock without
2Our implementations support re-entrant locking operations but filter them out before further anal-

ysis.
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an intervening matching lock release.

2. Synchronization blocks are well-nested. More explicitly, if an acquisition of lock

l2 is performed after an acquisition of lock l1 by the same thread and before

l1’s matching release then the matching release of l1 cannot appear before the

matching release of l2 does.

In future sections, we refer to well-formed traces simply as traces.

7.3 Conflicts and Happens-Before

Before defining the happens-before relation, we review the definition of clash

and conflict along with some related relations over the operations in a trace.

We begin by assuming a helper relation:

• the binary relation � (read clashes). Two events by different threads clash if they

both access the same variable and one of the operations is a write.

We also introduce four basic orders over the operations in a trace: total order

(TO), which is a total order over all operations; program order (PO), which orders

operations by the same thread; release-acquire order (RA), which relates each release

operation on a lock with every subsequent acquire on that lock; and communication

order (CO), which orders clashing operations.

TOα
def= {(a, b) | a ∈ α, b ∈ α, idof (a) <= idof (b)}3

POα
def= {(a, b) ∈ TOα | tid of a = tid of b}

RAα
def= {(r, a) ∈ TOα | r = rel(t,m) and a = acq(u,m)}

COα
def= {(a, b) ∈ TOα | a � b}

3These orders are defined using set builder notation from ISO 31-11.
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Figure 7.2: Simple trace example γ (on left; from Figure 1.9) and η (on right;
from Figure 1.8).

Thread 1 Thread 2
a: w(x)

b: acq(l)

c: rel(l)

d: acq(l)

e: rel(l)

f: w(x)

Thread 1 Thread 2
u: acq(l)

v: rel(l)

w: w(x)

x: w(x)

y: acq(l)

z: rel(l)

For example, consider the traces γ and η in Figure 7.2. Figure 7.3 lists all the TO,

PO, RA and CO edges over the two example traces. We write a <αX b to abbreviate

(a, b) ∈ Xα for some ordering relation X over trace α, and we omit the superscript α

when it is clear from the context.

The happens-before relation for a trace α is a partial order over the operations

in α that characterizes which operations in a trace may enable or influence subsequent

operations in the trace. This characterization leverages a notion of conflicting operations

that cannot be reordered without potentially impacting the behaviour of a trace. More

formally, two operations in a trace conflict if they satisfy one of the following conditions:4

• Lock conflict: the operations acquire or release the same lock.

• Program order conflict: the operations are performed by the same thread.

The happens-before relation is based on the orderings of conflicting operations. Adjacent

non-conflicting operations are said to commute, as swapping their order in a trace will

not influence the behaviour of the trace.

Definition 2 (Happens-before). The happens-before relation for a trace α is the tran-

sitive closure of the union of the program order and release-acquire order edges.

<αHB
def= (POα ∪RAα)∗

4Sometimes, the phrase communication conflict (or communication-order conflict) is used to refer to
a clash; note that CO edges do not form part of the happens-before relation.
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Figure 7.3: Various relations over traces from Figure 7.2.

TOγ (a, a), (a, b), (a, c), (a, d),
(a, e), (a, f), (b, b), (b, c),
(b, d), (b, e), (b, f), (c, c),
(c, d), (c, e), (c, f), (d, d),
(d, e), (d, f), (e, e), (e, f),
(f, f)

TOη (u, u), (u, v), (u,w), (u, x),
(u, y), (u, z), (v, v), (v, w),
(v, x), (v, y), (v, z), (w,w),
(w, x), (w, y), (w, z), (x, x),
(x, y), (x, z), (y, y), (y, z),
(z, z)

POγ (a, a), (a, b), (a, c), (b, b),
(b, c), (c, c), (d, d), (d, e),
(d, f), (e, e), (e, f), (f, f)

POη (u, u), (u, v), (u,w), (v, v),
(v, w), (w,w), (x, x), (x, y),
(x, z), (y, y), (y, z), (z, z)

RAγ (c, d) RAη (v, y)

COγ (a, f) COη (w, x)

<γHB TOγ <ηHB (v, y), (u, u), (u, v), (u,w),
(v, v), (v, w), (w,w), (x, x),
(x, y), (x, z), (y, y), (y, z),
(z, z), (u, y), (u, z), (v, z)

Figure 7.3 lists all edges of the happens-before relation for the traces from Figure 7.2.

Notice that x is involved in a happens-before race in η, but not in γ. An alternative

formulation of happens-before is below:

Definition 3 (Happens-before).

• Events by the same thread are ordered as they appear.

a <αHB b if (a, b) ∈ POα

• Releases and acquisitions of the same lock are ordered as they appear.

a <αHB b if (a, b) ∈ RAα
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• <HB is closed under composition with itself.

<HB= (<HB ◦ <HB)

Two traces are equivalent if one can be obtained from the other by repeatedly

swapping adjacent non-conflicting (commuting) operations. Equivalent traces yield the

same happens-before relation, and exhibit equivalent behavior.

Definition 4 (HB-race). A trace α has a happens-before race condition if there exists

two clashing operations a, b ∈ α that are not ordered by happens-before.

This definition of a happens-before race condition captures the notion that

there is no synchronization between two clashing accesses on a particular variable. Hence

those clashing accesses could have been scheduled in either order, introducing (probably

unintentional or erroneous) non-determinism into the program’s behavior.
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Chapter 8

Vector Clocks

SideTrack and Embracer use vector clocks [103] to identify concurrent

acquire operations within a trace by compactly representing the happens-before relation.

A vector clock maps thread identifiers to integer clocks:

K def= Tid → N

If k is the vector clock for an acquire operation in a trace, then k(t) identifies the

operations of thread t that happen-before that acquire.

Vector clocks are partially-ordered (v) in a point-wise manner, with an associ-

ated join operation (t) and minimal element (⊥). In addition, the helper function inct

increments the t-component of a vector clock. For all vector clocks k, k1, and k2:

k1 v k2 iff ∀t. k1(t) ≤ k2(t)

k1 t k2 = λt. max (k1(t), k2(t))

⊥ = λt. 0

inct(k) = λu. if u = t then k(u) + 1 else k(u)
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8.1 Simple Happens-Before Race Detection

As an illustration of vector clocks, we formalize a happens-before detector as

an online analysis based on an analysis state φ = (C,R,W,U), where:

• C : Tid → K records the vector clock of the current operation by each thread;

• R : Var → K records the vector clock of the last read of each shared variable;

• W : Var → K records the vector clock of the last write of each shared variable and

volatile variable; and

• U : Lock → K records the vector clock of the last unlock of each lock.

In the initial state φ0, all vector clocks are initialized to ⊥, except each Ct starts at

inct(⊥) to reflect that the first steps by different threads are not ordered.

φ0 = (λt. inct(⊥), λx. ⊥, λx. ⊥, λm. ⊥)

Figure 8.1 formalizes how the HB state is updated for each operation a of the

target program’s trace, via the relation φ Va φ′. Each of the analysis rules in Figure 8.1

consists of one or more antecedents (above the line) and a single consequent (below the

line). When implementing these rules, it is useful to break down the antecedents into

checks, and updates. Checks indicate when the analysis should flag an error. Updates

describe how the next analysis state is obtained.

• The rule [HB read] signals a happens-before race when the prior operation of the

reading thread is unrelated by happens-before with the previous write operation

for that variable; a read operation may commute with other read operations un-

related by happens-before and still exhibit the same behavior. Here, C is a map,

Ct is an abbreviation for C(t), and C[t := k ] denotes a map that is identical to C

except that it matches t to k .

52



Figure 8.1: Happens-Before Race Detection Algorithm

[HB read]
Wx 6v Ct =⇒ race
R′ = R[x := Rx[t := Ct(t)]]

(C,R,W,U) Vr(t,x,v) (C,R′,W,U)

[HB write]
Rx 6v Ct =⇒ race
Wx 6v Ct =⇒ race
W′ = W[x := Wx[t := Ct(t)]]

(C,R,W,U) Vw(t,x,v) (C,R,W′,U)

[HB acquire]

C′ = C[t := Ct t Um]
(C,R,W,U) Vacq(t,m) (C′,R,W,U)

[HB release]
U′ = U[m := Ct]
C′ = C[t := inct(Ct)]

(C,R,W,U) Vrel(t,m) (C′,R,W,U′)

• Similarly, the rule [HB write] signals a happens-before race when the prior oper-

ation of the writing thread is unrelated by happens-before with the previous read

or write operation for that variable.

• An acquire operation must happen after any prior release operations; the rule

[HB acquire] joins the current vector clock with the time of the previous release.

• The rule [HB release] records when the lock is released and increments the

current vector clock.

Figure 8.2 shows the relevant portions of the analysis state, and how these

state components are updated, as each operation in the trace γ on the left of Figure 7.2
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is processed. The first operation updates Wx with the write time of x.1 The first acquire

does not alter any of the state components since Um is still ⊥. The subsequent release

by Thread 1 updates Um with the time of the release and then increments the clock for

Thread 1. The acquire by Thread 2 updates C2 to reflect the time of the last release

(by Thread 1). The subsequent release by Thread 2 updates Um with the time of the

release and then increments the clock for Thread 2. When Thread 2 writes x, Wx v C2

and so no race is reported.

Figure 8.2: Happens-Before Vector Clock Example

⟨1,0,...⟩

⟨1,0,...⟩

⟨1,0,...⟩

acq(1,m)

⟨0,1,...⟩

⟨0,1,...⟩

⟨1,1,...⟩

⟨1,0,...⟩

⟨0,0,...⟩

⟨1,0,...⟩

⟨1,0,...⟩

⟨1,0,...⟩

⟨0,0,...⟩

⟨0,0,...⟩

⟨0,0,...⟩

⟨1,0,...⟩

⟨1,0,...⟩

⟨0,1,...⟩

⟨0,1,...⟩

⟨2,0,...⟩

⟨2,0,...⟩

rel(1,m)

acq(2,m)

w(1,x)

C1 C2 Wx Um

⟨1,2,...⟩ ⟨1,0,...⟩ ⟨1,1,...⟩⟨2,0,...⟩

⟨1,2,...⟩ ⟨1,2,...⟩ ⟨1,1,...⟩⟨2,0,...⟩

rel(2,m)

w(2,x)

1Rx is left off since the trace does not contain any reads.
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Chapter 9

RoadRunner

RoadRunner is a framework, written in Java and developed by Cormac

Flanagan and Stephen Freund, designed for developing dynamic analyses for multi-

threaded programs [63]. RoadRunner supports chaining of tools, so that multiple

analyses can be run concurrently. RoadRunner also allows direct comparison between

tools in an apples-to-apples way.

RoadRunner instruments the target bytecode of a program during load time

and provides a clean API for analysis tools to run over an event stream. The instrumen-

tation code generates a stream of events for lock acquires and releases, field and array

accesses, method entries and exits, etc. Re-entrant lock acquires and releases are redun-

dant and are filtered out. Tools implemented in RoadRunner, such as Embracer and

SideTrack, process this event stream as it is generated. See Figure 9.1 for an overview

of this structure. In this figure, Java bytecode is instrumented by RoadRunner as it is

loaded. This instrumented bytecode produces an event stream which is fed to analysis

tools.

RoadRunner enables analysis tools to attach instrumentation state to each

thread, lock object, and data memory location used by the target program. This feature

is represented by the “Abstract State” in Figure 9.1. Tool-specific event handlers update
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the instrumentation state for each operation in the observed trace and report errors

when appropriate. These handlers can be implemented by simply defining methods

for particular events of interest. These methods may leverage custom instrumentation

state.

We have implemented a number of tools for the work in this dissertation,

including many unpublished prototypes. RoadRunner proved excellent for rapidly

prototyping new dynamic analysis algorithms. We found the use of RoadRunner to

be good for research methodology: direct implementation comparisons between two al-

gorithms leads to meaningful and substantial experimental results. Furthermore, Road-

Runner is open source and widely accessible.

Figure 9.1: Diagram showing the overall structure of how RoadRunner

works with tools.
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Part IV

CP Relation
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Chapter 10

Introduction

Part IV is focused on the causally-precedes (CP) relation: a novel relation

over the operations in a trace that is less restrictive than the happens-before relation.

A precise race detector can be built from this relation by reporting clashing operations in

a trace that are unordered by the CP relation as racing. Such a detector is of polynomial

complexity and does not introduce false positives. This work was originally presented

at the 2012 Symposium on Principles of Programming Languages (POPL) [139].

The problem with plain happens-before race detection (Section 6.2.1 and Sec-

tion 7.3) is that it can miss many races due to accidental HB edges. The original

definition of happens-before by Lamport [91] was in the context of distributed systems,

with an HB edge introduced for explicit inter-process communication. However, lock

synchronization does not induce the same hard ordering as explicit communication. A

lock-based critical section can often be reordered with others, as long as lock semantics

(i.e. mutual exclusion) is preserved.

Consider the code example shown in Figure 10.1. In this example, the class

PolarCoord has two fields, radius and angle, protected by the object lock this. The

count field tallies the number of accesses to radius and angle, and the main method forks

two concurrent threads. This program has a race condition on count; unfortunately,
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Figure 10.1: Example Program PolarCoord

1 class PolarCoord {

2 int radius, angle;

3 int count; // counts accesses

4

5 static PolarCoord pc = new PolarCoord();

6

7 void setRadius(int r) {

8 count++;

9 synchronized(this) { radius = r; }

10 }

11

12 int getAngle() {

13 int t;

14 synchronized(this) { t = angle; }

15 count++;

16 return t;

17 }

18

19 public static void main(String[] args){

20 fork { pc.setRadius(10); }

21 fork { pc.getAngle(); }

22 }

23 }

precise race detectors such as FastTrack [62] or djit+ [119] fail to detect this race

condition on 94% of test runs.

Figure 10.2(A) illustrates the essence of the problem by showing the trace that

the HotSpot JVM typically generates for the program of Figure 10.1, with no overlap

between the executions of the two threads. For this trace, a happens-before race detector

would not find a race on count, since the lock release by Thread 1 happens-before the lock

acquire of Thread 2, thereby masking the lack of synchronization between the accesses

to count. In contrast, Trace B presents a different scheduling where there is clearly a

race on count. By inspection, we are able to predict from Trace A that a race condition

could occur as in Trace B; we say that Trace A has a predictable race.

In the following chapters, we define a novel relation, causally-precedes (CP),

by analogy to happens-before, to detect such races. A race occurs if two clashing
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Figure 10.2: Example Traces for the PolarCoord Program.

Thread 1 Thread 2
r(count)
w(count)
acq(this)
w(radius)

rel(this)

acq(this)
r(angle)

rel(this)
r(count)
w(count)

Thread 1 Thread 2
acq(this)
r(angle)

rel(this)

r(count)
w(count)

r(count)
w(count)

acq(this)
w(radius)

rel(this)

Tool Report
Happens-Before: “no race”

Causally-Precedes: “race”

Tool Report
Happens-Before: “race”

Causally-Precedes: “race”

(A) Predictable race condition (B) Happens-before race
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operations are not CP-ordered. Unlike prior precise race detectors, a CP-based race

detector can detect predictable race conditions as in Figure 10.2(A). The essence of

detecting this predictable race is that the critical section of Thread 2 has received

no information that can reveal whether the critical section of Thread 1 has already

executed or not. More precisely, reordering events as in trace B (thus exposing an HB

race) maintains the property that all read operations return exactly the same values as

in the original execution—we call this a correct reordering of the observed behavior. A

correctly reordered execution is just as feasible as the observed one.

CP-based race detection offers the first sound yet scalable technique for pre-

dictive race detection.1 Specifically, CP weakens the HB order while still maintaining

soundness. CP race detection results are not complete: examining all correct reorderings

of the original trace would necessitate an exponential search. Consequently, a CP-based

detector may miss some races. Nevertheless, it is guaranteed to detect a (non-strict)

superset of the observed happens-before races and to only give warnings for true races.

In the following chapters, we formally define the CP relation and demonstrate

with numerous examples why it is not easy to weaken HB while remaining precise. For

reference, a replication of the soundness proof for CP (originally presented in POPL

2012 [139]) can be found in Appendix B and preliminary experimental results for a

CP-based race detector can be found in Appendix A.

1Prior work focused on predictive data race detection extends happens-before race detection with a
hybrid of testing and model checking [32, 34, 35, 135, 137]. See Section 6.1 and 6.2.4 for a more detailed
discussion on the related work and its limitations.
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Chapter 11

CP Relation

We now formally define the causally-precedes relation.

Definition 5 (Causally Precedes). Causally precedes (<CP ) is the smallest relation

such that:

a) <CP has a release-acquire edge between critical sections over the same lock that

contain clashing events.

In other words, relk(t, l) <CP acqh(u, l) if there are operations a and b such that:

• a � b
• acqk(t, l) <po a <po relk(t, l)

• acqh(u, l) <po b <po relh(u, l)

• relk(t, l) <to acqh(u, l)

b) <CP has a release-acquire edge between critical sections over the same lock that

contain CP-ordered events. These events can be lock acquisition or release oper-

ations, and not necessarily internal events in the critical section.

Because of Rule (c), below, this condition turns out to be equivalent to the seem-

ingly weaker “releases and acquisitions of the same lock are ordered if the begin-

ning of one critical section is CP-ordered with the end of the other”—since there
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is an HB order between the start of a critical section and every internal event,

as well as all internal events and the end of a critical section. In other words,

relk(t, l) <CP acqh(u, l) if k 6= h and acqk(t, l) <CP relh(u, l)

c) CP is closed under left and right composition with HB.

<CP= (<HB ◦ <CP ) = (<CP ◦ <HB)

Thread creation and joining can be added straightforwardly, as explicit causally-

precedes edges; for simplicity, we do not discuss these events in the examples. Note that

<CP is a subset of the happens-before relation. Inspecting the three cases of the <CP

definition, we see that all <CP edges produced by the first two rules are release-acquire

edges on the same lock and so are also <HB edges. The third rule then states that CP

is closed under composition with HB, which still produces a subset of the HB edges,

since HB is transitively closed. It is similarly easy to see that CP is transitive.

Every CP race (and hence every HB race) is also a lockset race, since the

absence of a CP edge between clashing accesses to a location means that there is no

consistently held protecting lock for that location. Consequently, a lockset-based race

detector would detect all races detected by CP,1 and may also report many additional

warnings. In practice, many of these extra warnings are false alarms that do not corre-

spond to actual races.

Definition 6 (CP-Race). We define a race (or CP-race when we need to distinguish

from happens-before races) to be a pair of clashing events that are not CP-ordered in

either direction.
1Note that the Eraser algorithm [131], which incorporates lockset-based reasoning, is also slightly

incomplete in how it reasons about thread-local data, and so may miss some real HB or CP races.
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11.1 Illustration

There are a few aspects of the definition of CP that should be emphasized for

clarity. Probably most important among them is that CP is not a reflexive relation. (If

it were, Rule (c) would make CP equal to HB.) Consequently, CP is also not a partial

order.

Recall that we want CP to retain only some of the HB edges in a way that

captures which clashing events could have happened simultaneously in a reordered but

certain-to-be-feasible execution. Consider again the example of Figure 10.2 and observe

that the shown HB edge is not a CP edge. None of the events shown are CP-ordered—i.e.

they constitute a CP-race (and a predictable race). The same occurs in the execution

of Figure 11.1.

Figure 11.1: Another example of a certain race not reported by HB.

Thread 1 Thread 2
w(y)

acq(l)

rel(l) PPq
acq(l)

rel(l)

w(y)

In both cases, the critical sections do not contain clashing events, which would

order them per Rule (a) of the CP definition. In contrast, Figure 11.2 incurs no CP

race report: the HB release-acquire edge is also a CP edge (per Rule (a)) and Rule (c)

can then be used to CP-order the two operations on variable y.

Indeed, Rule (a) of the CP definition is almost inevitable. The ordering of

critical sections containing clashing events is a key part of how information flows through

a trace; changing this ordering could cause a trace to diverge.

Definition 7 (Correctly Reorders). We say that an execution ex′ correctly reorders
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Figure 11.2: Example with no predictable race.

Thread 1 Thread 2
w(y)

acq(l)

w(x)

rel(l) PPq
acq(l)

r(x)

rel(l)

w(y)

(CR) another execution ex (also written ex′ =CR ex) iff ex′ is a total order over a

subset of the events of ex that:

• contains a prefix of the events of every thread in ex and respects program order,

i.e. if an event e in ex appears in ex′ then all events by the same thread that

precede e in ex also appear in ex′ and precede e.

• for every read event that appears in ex′, the most recent write event of the same

variable in ex′ is the same as the most recent write event of the same variable in

ex.

The definition of CR matches an intuition for feasible alternative executions:

if every value read is the same as in the observed execution, then the alternative is

certainly also feasible.2

In this light, Rule (a) from the definition of CP is intuitively clear: as far

as later events are concerned, two clashing events have to occur in the same order

in every correctly-reordered execution. Thus, clashing events induce a hard ordering

dependency, if it is certain that they do not constitute a race (in this case, because they

are protected by a common lock). Since two critical sections over the same lock have
2This pairing of a read with the most recent write event implicitly introduces sequential consistency

as an assumption. Nevertheless, this is not a constraint: Every HB race is a CP race. In case no HB
races are observed for an execution, a relaxed memory model yields sequentially consistent behavior,
thus our assumption is valid.
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to be ordered in their entirety (i.e. all events of one have to precede all events of the

other) the ordering constraint on clashing events becomes an ordering constraint on the

entire critical section containing them. The same reasoning applies to Rule (b) of the

CP definition: if two events internal to respective critical sections are CP-ordered, then

the entire critical sections are also CP-ordered.

Rule (c) is the most interesting aspect of the CP definition. The rule is both

very conservative and surprisingly weak, in different ways. Intuitively, Rule (c) is di-

rectly responsible for the soundness of CP: once some evidence of inevitable event or-

dering is found, all earlier and later events in an HB order automatically maintain their

relative order. This conservative aspect of the Rule is necessary for ensuring that a CP

race truly indicates that the events could have been concurrent. At the same time, Rule

(c) is quite weak. Consider three events e1, e2, and e3. It could be that e1 <CP e2,

e2 <HB e3, and consequently e1 <CP e3. This still does not mean that e2 <CP e3,

even though the HB order between e2 and e3 is what allows e1 to CP e3. This aspect

is what allows CP to identify the possibility of predictable races (as in e2-does-not-

causually-precede-e3) even when it assumes conservatively that certain reorderings are

not possible, in order to maintain soundness.

66



Chapter 12

Example Traces

In this chapter, we discuss the subtleties of CP through examples of hard-to-

reason-about executions. For each example, it is instructive for the reader to consider

independently whether there is a predictable race or not. Reasoning about concurrent

executions is quite hard: even concise examples require exhaustive examination of a

large number of possible schedulings or complex formal reasoning to establish ordering

properties. In the following examples, we expressed the constraints as symbolic inequal-

ities with disjunctions (e.g. “this event is either before that or after the other”) and

proved manually they were unsatisfiable.

These example traces were developed over a multi-year period to expose errors

in many prior failed attempts to create a precise relation that is less restrictive than

HB. They are the key examples that led to the current CP definition, and represent an

acid test for future such relations.

12.1 Example Highlighting Second Rule in CP Definition

Figure 12.1 contains a first example that suggests why sound predictive race de-

tection is hard in the presence of many threads and nested locks. We use the shorthand
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sync(lock) for a sequence of events that induces an inevitable ordering with other iden-

tical sync sequences. For example, sync(n) can be short for acq(n); r(nVar); w(nVar);

rel(n). For ease of reference, CP edges produced by Rule (a) of the CP definition are

shown in the figure, as dotted arrows. The example from Figure 12.1 necessitated the

addition of rule (b) to the CP definition.

Figure 12.1: No race between the two writes to x in any correctly reordered
execution.

Thread 1 Thread 2 Thread 3
acq(m)

sync(n)

acq(l)

sync(n)

w(x)

rel(l)

sync(n)

w(z)

rel(m)

acq(m)

r(z)

w(z)

rel(m)

acq(l)

rel(l)

w(x)

1

There is no predictable race between the two writes to x in the above example:

any correct reordering of the execution will have the three sync sequences and the

critical sections over lock m ordered in the way they were observed, resulting in an

ordering of the two writes. Interestingly, the empty critical section over l by Thread

3 is necessary, or there would be a predictable race. The CP definition captures this

reasoning accurately. Rule (b) is essential in establishing that the two critical sections

over lock l are CP-ordered: because of rule (b), the end of the critical section over l

in Thread 2 is CP-ordered relative to the (empty) critical section over l in Thread 3.
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Since CP composes with HB to yield CP, the sync(n) event in Thread 2 is CP-ordered

with acq(l) in Thread 3, thus triggering rule (b).

12.2 Example Highlighting Third Rule in CP Definition

For another interesting example, consider Figure 12.2. There is no predictable

Figure 12.2: Trace with no predictable HB-race on x.

Thread 1 Thread 2 Thread 3 Thread 4
w(x)

acq(m)

sync(o)

sync(p)

rel(m)

acq(n)

sync(q)

sync(o)

rel(n)

acq(n)

sync(r)

sync(p)

rel(n)

acq(m)

sync(q)

sync(r)

rel(m)

w(x)

1

race on x in this example, but establishing this fact requires case-based reasoning in-

volving both the hard ordering constraints induced by sync sequences and the semantics

and identity of locks (e.g. the fact that the critical sections on n cannot overlap). CP

69



avoids such reasoning but gives an accurate result. The two critical sections on n are

not CP-ordered, and also do not necessarily occur in the order shown in a correctly

reordered execution. The two critical sections on m, however, are CP-ordered and also

necessarily in the order observed. In this example, we see the interesting aspects of Rule

(c) of the CP definition: even though the HB order between the critical sections on n

is what enables the CP order between the critical section on m, the former does not get

upgraded to a CP order.

12.3 Example Highlighting Interconnectedness

Figure 12.3: No predictable race between the two writes to x.

Thread 1 Thread 2 Thread 3 Thread 4
w(x)

acq(m)

sync(n)

acq(l)

sync(n)

sync(n)

rel(m)

acq(m)

sync(o)

sync(o)

rel(l)

acq(l)

sync(p)

sync(p)

rel(m)

w(x)

sync(q)

sync(q)

sync(r)

sync(r)

rel(l)

1
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Figure 12.3 presents another hard-to-reason-about example. This execution

does not have a predictable race on variable x. Nevertheless, the reasoning required to

establish this fact can be quite complex. Removing events can easily result in a racy

execution. For instance, removing the sync(r) edge allows a race by moving the entire

set of operations by Thread 3 and Thread 4 before those of Thread 1 and Thread 2.

This example highlights how potential relations must be able to deal with complicated

schedules involving several threads and many dependencies.

12.4 Example Highlighting Complex Reorderings

Detecting predictable races can often require complex reorderings of events.

The value of a polynomial but sound predictive race detector is that it avoids exploring

all such reorderings. Consider the case of Figure 12.4. There is a CP-race between the

Figure 12.4: Exposing the HB race on x (execution on the left) requires a
complex reordering of events (shown on the right).

Thread 1 Thread 2
acq(m)

sync(o)

w(x)

acq(n)

rel(n)

rel(m)

acq(n)

acq(m)

rel(m)

w(x)

sync(o)

rel(n)

Thread 1 Thread 2
acq(n)

acq(m)

rel(m)

acq(m)

sync(o)

w(x)

w(x)

sync(o)

rel(n)

acq(n)

rel(n)

rel(m)

two writes to variable x. There is also a predictable race. It is not possible to expose

this, however, without thread scheduling that breaks up the synchronized block on n by

Thread 2 and the synchronized block on m by Thread 1, as shown on the right part of the
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figure. CP does not need to reproduce the schedule in order to warn of a possible race.

We previously attempted to develop relations and proof strategies based on swapping

entire synchronized blocks. This example highlights the pitfalls of such an approach.

12.5 CP and Deadlocks

CP often avoids complex nested lock reasoning by not distinguishing between

a predictable race and a deadlock. The soundness theorem (Appendix B) has an inter-

esting form: a CP-race is a sound indication of either a race or a deadlock in a correctly

reordered execution. The deadlock is immediately apparent: there is a cycle in the lock-

blocking graph. To see this consider the example of Figure 12.5. There is a CP-race

Figure 12.5: The observed execution (left) has a CP-race between the two
writes to x. There is no predictable race, however! Instead, it is easy to
reorder events to expose a deadlock (see right).

Thread 1 Thread 2
acq(m)

acq(l)

rel(l)

w(x)

rel(m)

acq(l)

acq(m)

rel(m)

w(x)

rel(l)

Thread 1 Thread 2
acq(m)

acq(l)

acq(l)

acq(m)

between the accesses to variable x in this example. Yet there is no predictable HB race:

no correctly reordered execution can have the two write events without synchronization

between them. The CP soundness theorem states that this is only possible when a re-

ordering can expose a deadlock due to threads acquiring locks in a way that introduces

a cycle in the acquisition dependencies.
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The prior examples offer the reader a glimpse of the complexities of defining CP

(and proving its soundness). The difficulty of reasoning about event order highlights

the challenge of defining a relation that weakens the observed ordering much more

than happens-before without resulting in false positives. There is a tradeoff between

the complexity of a relation (and analyses based off of that relation) and the ability

of that relation to predict additional races. A relatively simple race analysis has to

conservatively assume ordering every time events may be ordered. Rule (c) of the CP

definition plays this role but it was still difficult to prove that it is conservative enough.

The ultimate conservative ordering is of course HB: all critical sections are assumed to

always be precisely in the order they were observed.

73



Part V

Embracer
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Chapter 13

Introduction

Precise race detectors are important tools for developing reliable multithreaded

programs while avoiding the costs associated with false alarms. In Part IV, we presented

a relation that enables precise race prediction. However, this relation is non-trivial to

implement within a dynamic race detector. Part V, like Part IV, is focused on extending

traditional dynamic race detection to also support race prediction. In Part V, we define

an imprecise, online algorithm (Embracer) based on the must-before relation. Even

when the observed trace is race-free, Embracer predicts if a race may occur on another,

similar trace from the same program. This algorithm, like CP, is based on identifying

situations where two synchronized blocks could be reordered. For example, Embracer

successfully detects the predictable race in Trace A of Figure 10.1. However, the al-

gorithm presented in this chapter has the potential to introduce false positives. The

implementation for Embracer involves a variety of novel dynamic analysis techniques,

such as adjustable vector clocks, and provides a significant increase in the ability to

detect race conditions.

As a first step, we describe a must-before relation. This relation is an unsound

approximation of the CP relation that is less restrictive (in terms of release-acquire

edges) than the traditional happens-before relation, but easier to implement than the
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CP relation. Whereas the happens-before relation includes edges between every two

synchronized blocks that acquire the same lock, the must-before relation includes edges

if the two synchronized blocks contain clashing memory accesses.

The happens-before relation is traditionally represented using vector clocks.

For the the must-before relation, we develop representation techniques that are a bit

more involved, since they require adding additional release-acquire edges “after the

fact,” when the race predictor is deep in the execution of the second synchronized block

and detects a clash with an earlier block.
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Chapter 14

Must-Before Relation

The happens-before relation totally orders synchronized blocks of the same lock

via release-acquire edges. As we have seen in Part IV, this ordering is often too strict,

since two synchronized blocks may be able to commute and still preserve behavior. In

order to predict races that do not manifest in the current trace, this chapter introduces a

new must-before relation that potentially contains less release-acquire edges than either

the happens-before relation or the CP relation. As mentioned above, this relation can

produce false positives. In particular, the tricky trace from Figure 12.2 contains an MB

race on x because there is no MB edge between the synchronized blocks on m.1

Definition 8 (Must-Before Relation). The must-before relation MBα for a trace α is

the smallest binary relation on operations in α that is:

1. transitively closed,

2. includes POα and COα,

3. if acqk(t,m) <αmb relh(u,m) where k 6= h

then relk(t,m) <αmb acqh(u,m)
1In contrast, this edge exists in the CP relation because of the way CP is closed under composition

with HB.

77



Note that although this relation contains less than or equal to the release-

acquire edges of the CP relation, there are additional edges present between clashing

accesses. This presence of additional edges simplifies the implementation of the algo-

rithm, but means that a race detector based on the must-before relation may miss races

identified by a standard happens-before detector. In practice, we integrate a standard

happens-before detector into the implementation so as to report a superset of races. See

Chapter 16 for more information.

Intuitively, condition 3 says that if the start acqk(t,m) of one synchronized

block must occur before the end relh(u,m) of a later synchronized block, then the

end of the first block must occur before the start of the second block. To illustrate this

situation, consider the following trace (Figure 14.1), where a clash on y between the two

synchronized blocks orders Thread 1’s acquire before Thread 2’s release by transitivity,

thereby inducing an MB edge between Thread 1’s release and Thread 2’s acquire.

Figure 14.1: A trace with a release-acquire MB edge

Thread 1 Thread 2
r(x)

acq(m)

w(y)

rel(m) PPq
acq(m)

r(y)

rel(m)

w(x)

In contrast, in Figure 10.1(A) we do not include an MB edge between the re-

lease and acquire operations on this because there is no other MB relationship between

the two synchronized blocks.

Note that we cannot determine if two synchronized blocks are ordered by the

MB relation until we see the end of the second synchronized block, and so the MB
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relation can only detect race conditions in closed traces (with no open synchronized

blocks). A trace α has a must-before race condition if α is closed and there exists two

clashing operations a, b ∈ α such that:

6 ∃c ∈ α. a <αmb c and c <αpo b

In this situation we write (a, b) ∈MBRα.
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Chapter 15

Must-Before Race Prediction

The central challenge in implementing a must-before race detector is adding

edges, relating past operations, to the MB relation that is already encoded in the vector

clocks. To illustrate this problem, consider again the trace in Figure 14.1, where a clash

on y between the two synchronized blocks necessitates an additional MB edge between

the first release and the second acquire: we may only add this release-acquire edge upon

the second release. The traditional vector clock representation does not support adding

past edges.

15.1 Adjustable Vector Clocks

Instead, we extend the vector clock representation by keeping a collection of

extra release-acquire edges E : (K×K )∗. If we have (k1, k2) ∈ E , then there is an “extra”

edge to consider, from k1 to k2. This edge is useful only if k1 6v k2, since otherwise the

edge is already encoded in k1 and k2.

Every use of a vector clock k needs to be “adjusted” according to these extra

edges, via the function adjustE(k), which returns the smallest vector clock k ′, such that

1. k v k ′; and
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2. if (r, a) ∈ E and a v k ′ then r v k ′.

Intuitively, given an operation with vector clock k , if k has already been adjusted to k ′,

and if E contains a must-before edge from r (release) to a (acquire) and there is a must-

before edge from a to k ′ (i.e., a v k ′), then by transitivity there is also a must-before

edge from r to k ′ (i.e., r v k ′).

We define the extended ordering relation vE that appropriately adjusts for

these extra edges:

k1 vE k2 if k1 v adjustE(k2)

This adjustable vector clock representation of the must-before relation com-

bines the efficiency and compactness of the vector clock representation with the flexi-

bility of being able to add extra edges to the past.

15.2 Analysis State

We now present Embracer (a must-before race predictor), our algorithm for

performing race prediction founded on the must-before relation. Embracer is expressed

as an online algorithm based on an analysis state σ = (C,W,R, E ,H,A,B); we describe

each of the state components below.

• C : Tid → K records the vector clock of the current operation by each thread.

• W : Var → K records the vector clock of the last write of each shared variable.

• R : Var → K records the vector clock of the last read of each shared variable.

• E : (K × K )∗ records the extra edges connecting synchronized blocks in our MB

relation.

• H : Lock → (K × K )∗ records for each lock the history of acquire and release

operations for each synchronized block.
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Figure 15.1: Must-Before Race Detection Algorithm

[MB read]
B′ = B ∪ {(Wx, Ct) |Wx 6v Ct}
C′ = C[t := inct(Ct tWx)]
R′ = R[x := Rx t C′t]

(C,W,R, E ,H,A,B)⇒r(t,x,v) (C′,W,R′, E ,H,A,B′)

[MB write]
B′ = B ∪ {〈Wx, Ct〉 |Wx 6v Ct} ∪ {〈Rx, Ct〉 |Rx 6v Ct}
C′ = C[t := inct(Ct tWx tRx)]
W ′ = W[x := C′t]

(C,W,R, E ,H,A,B)⇒w(t,x,v) (C′,W ′,R, E ,H,A,B′)

[MB acquire]
C′ = C[t := inct(Ct)]
A′ = A[m := Ct]

(C,W,R, E ,H,A,B)⇒acq(t,m) (C′,W,R, E ,H,A′,B)

[MB release]
A′ = A[m := ⊥]
H′ = H[m := Hm ∪ {〈Am, Ct〉}]
E ′ = E ∪ {〈r, Am〉 | 〈a, r〉 ∈ Hm ∧ a vE Ct}

(C,W,R, E ,H,A,B)⇒rel(t,m) (C,W,R, E ′,H′,A′,B)

• A : Lock → K⊥ records for each lock the vector clock of the open acquire, or ⊥ if

there is none.

• B : (K × K )∗ records the vector clocks for each potentially bad (or racy) clashing

access pair. Since we determine must-before races only on closed traces (with no

open synchronized blocks), we store clashing access pairs in B and check if they are

actually races later, when we have a closed trace.
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15.3 Analysis Rules

For each operation a in the observed trace, the must-before analysis state σ

is updated via the transition relation σ ⇒a σ′, as described via the transition rules in

Figure 15.1.

• [mb read] records in B one potentially racy clashing access pair, containing the

last write Wx to this variable and the current clock Ct. Here, C is a map, Ct is an

abbreviation for C(t), and C[t := k ] denotes a map that is identical to C except that

it matches t to k . Changes to the instrumentation state are expressed as functional

updates for clarity in the analysis rules, but are implemented as in-place updates

in our implementation. Pairs connected by an MB edge are elided for efficiency if

Wx v Ct. The Ct component is updated to reflect communication-order by joining

the current vector clock with the last write. The Rx component is updated with

the current vector clock.

• The [mb write] rule records in B two potentially racy clashing access pairs from

the last write and the last read to this variable, unless these clashing accesses are

clearly race-free. The Ct component is updated to reflect communication-order

by joining the current vector clock with the vector clock of the last write and

last read, and incremented to order this write operation after previous writes and

reads.

• The [mb acquire] rule records when the synchronized block is opened by storing

the current vector clock in Am. The current vector clock is then incremented to

order Am before subsequent events.

• [mb release] records the synchronized block’s open and close time in the history

component Hm.
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The final antecedent of this rule applies Condition 3 of Definition 8 to add extra

release-acquire edges to E . We consider all synchronized blocks (a, r) in Hm, and if

the acquire operation (at a) has a must-before edge to the current release operation

(at Ct), then we add an extra MB edge from the release of that block (at r) to the

start of the current synchronized block (at Am). Although operationally awkward,

H and E are necessitated by the fact that an MB release-acquire edge can only

be inferred after the second synchronized block finishes its release operation.

We say that a state σ is closed if ∀t ∈ Tid . At = ⊥ (that is, if the trace is

closed). When the analysis reaches a closed state, it processes all clashing access pairs

in B to determine if any reflect a real race after adjusting for the extra edges in E . Thus,

we consider a state σ = (C,W,R, E ,H,A,B) to be racy if there exists (a, b) ∈ B such

that a 6vE b. In other words, a pair of clashing operations in B represents a reportable

race if they are concurrent, even after adjusting for the release-acquire edges in E .

Analysis Example. We now illustrate our analysis on the example trace of Fig-

ure 14.1. This trace has clashing accesses to both x and y, and the analysis needs to

determine whether these clashing accesses are concurrent. Figure 15.2 shows the rel-

evant portions of the analysis state, and how these state components are updated as

each operation in the observed trace is processed.

The first three operations update Rx with the read time of x, Am with the

acquire time of lock m, and Wy with the write time for y, respectively. The operation

rel(0,m) updates Hm with a pair containing the acquire and release times for this

synchronized block. The operation r(1, y) appears concurrent with the previous write,

so the corresponding vector clocks are added to the bad (or clashing) set B, and C1 is

updated to record the write-read CO edge on y. At rel(1,m), the analysis detects that

this synchronized block by Thread 1 does not commute with the earlier block, and so

it adds the “extra” release-acquire edge separating these two blocks to E .
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Figure 15.2: Must-Before Vector Clock Example
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Once the trace is closed, the analysis inspects the bad set B to determine if it re-

flects a real race by checking if 〈4, 0〉 vE 〈0, 2〉, or equivalently, if 〈4, 0〉 v adjustE(〈0, 2〉).

The extra edge (〈4, 0〉, 〈0, 1〉) implies that adjustE(〈0, 2〉) = 〈4, 2〉, and so the analysis

concludes that 〈4, 0〉 vE 〈0, 2〉 and there is no race on y.
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Chapter 16

Implementation

We implemented the Embracer dynamic race detector as part of the Road-

Runner dynamic analysis framework, discussed in Chapter 9. The implementation

closely follows the analysis. For each variable or array element x, we maintain a shadow

object that records vector clocks Wx and Rx. For each thread t, we maintain a thread

state object that records Ct. For each lock m, we maintain a shadow object that records

Am and Hm. We represent E ,H, and B (all of type (K×K )∗) using a class that contains

two equi-length arrays of vector clocks. We also store additional state information to

support error reporting. Specifically, we keep pointers to the shadow state and thread

state objects for each access in B, along with information about the specific accesses.

16.1 Optimizations

We implemented several key optimizations to improve performance. A release-

acquire edge (r, a) is elided from E if r v a. We index Hm by thread identifier to add

only a single release-acquire edge from a particular thread. Lastly, we implement a fast

path by storing the thread identifier for the previous write of a variable, and bypass

checking for a race on read operations if the thread currently reading wrote the value
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being read.

16.2 Additional Operations

Figure 16.1 describes how our analysis handles additional operations: fork,

join, wait, notify and volatile memory accesses. To support notify operations, we extend

the analysis state with an additional component that stores for each lock the vector clock

of the last notify:

N : Lock → K

• [MB volatile read] and [MB volatile write] are similar to the basic MB

rules for reading and writing normal variables. Since volatile operations are syn-

chronization operations, we do not add edges to B.

• [MB fork] reflects that a fork operation must occur before the first operation

by the forked thread. Similarly, [MB join] reflects that the last operation by a

thread must occur before that thread is joined on.

• Our instrumentation framework provides separate prewait and postwait events

that bracket each wait operation of a target program. [MB pre wait] corre-

sponds to the lock release executed directly before a thread goes to wait. In

contrast, [MB post wait] is executed when a thread finishes waiting and corre-

sponds to a lock acquire, coupled with a join on N .

• [MB notify] updates N and C components to impose a total order on the notify

operations on each lock m.
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Figure 16.1: Additional Operations

[MB volatile read]
C′ = C[t := inct(Ct tWx)]
R′ = R[x := Rx t C′t]

σ ⇒vr(t,x,v) (C′,W,R′, E ,H,A,B,N )

[MB volatile write]
C′ = C[t := inct(Ct tWx tRx)]
W ′ = W[x := C′t]
σ ⇒vw(t,x,v) (C′,W ′,R, E ,H,A,B,N )

[MB fork]

C′ = C[t := inct(Ct), u := incu(Cu t Ct)]
σ ⇒fork(t,u) (C′,W,R, E ,H,A,B,N )

[MB join]

C′ = C[u := incu(Cu), t := inct(Ct t Cu)]
σ ⇒join(t,u) (C′,W,R, E ,H,A,B,N )

[MB pre wait]

identical to [MB release]

σ ⇒prewait(t,m) (C,W,R, E ′,H′,A′,B,N )

[MB post wait]
C′ = inct(Ct tNm)
A′ = A[m := Ct]

σ ⇒postwait(t,m) (C′,W,R, E ,H,A′,B,N )

[MB notify]
C′ = C[t := inct(Ct tNm)]
N ′ = N [m := C′t]

σ ⇒notify(t,m) (C′,W,R, E ,H,A,B,N ′)
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16.3 Embedded Happens-Before Race Detection

In the Embracer algorithm presented thus far, the inclusion of CO edges may

cause the algorithm to miss races identified by a traditional happens-before race detec-

tor. Specifically, the inclusion of CO edges enforces a sequentially consistent memory

model, even for racy accesses, whereas the Java Memory Model does not enforce an

ordering constraint between racy variable accesses.1 The trace in Figure 16.2 illustrates

this scenario. Under the algorithm presented so far, this trace has only one race on y;

under a relaxed memory model, it has races on both x and y.

Prior precise dynamic race detectors (e.g. FastTrack [62]) exploit the relaxed

memory model to detect more races. To address this disparity, the implementation

of Embracer concurrently performs race prediction and traditional happens-before-

based race detection for a relaxed memory model. In Chapter 17, the races found by

Embracer are a superset of the races found by FastTrack. Incorporating relaxed

memory model reasoning directly into the must-before relation is quite challenging, due

to the subtle interactions between a relaxed memory model and race prediction, and

remains a topic for future work.

Figure 16.2: Under sequentially consistent memory models, this trace has
only one race on y; under the Java Memory Model, it has races on both x
and y.

Thread 1 Thread 2
w(x)

w(y)

r(y)

r(x)

1See Section 3.2 for more information about memory models.
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Chapter 17

Evaluation

We evaluated the performance and prediction capability of Embracer on

a collection of multithreaded Java benchmarks ranging in size from 1,000 to 844,000

lines of code. These benchmarks include: colt, a library for high performance com-

puting [30]; raja, a raytracer program [68]; mtrt, a raytracer program from the SPEC

JVM98 benchmark suite [144]; and several benchmarks (crypt, lufact, moldyn, monte-

carlo, raytracer, series, sor, sparse) from the Java Grande set [81] (configured with

four threads and the base data set).

We also performed experiments on three large reactive benchmarks: Jigsaw,

W3C’s web server [154], coupled with a stress test harness; FtpServer, a high-per-

formance FTP server implementation from The Apache Foundation [150], coupled with

a JMeter workload [151]; and several Eclipse benchmarks based on the Eclipse software

development kit (version 3.4.0 [153]). The Eclipse benchmarks were automated using

swtbot, a UI automation library for SWT and Eclipse [152]. For comparison purposes,

each Eclipse benchmark extends the previous one with a new operation:

Startup: Launch Eclipse and immediately shut down.

NewProj: Launch Eclipse, create a new Java project, shut down.
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Race Conditions Detected
Average Per Run Total Over 10 Runs

Programs
Size

(loc)
Thread
Count F

a
st

T
r
a
c
k

E
m
b
r
a
c
e
r

Percent F
a
st

T
r
a
c
k

E
m
b
r
a
c
e
r

Percent

PolarCoord 44 3 0.1 1.0 1000% 1 1 100%
montecarlo 3,669 4 1.0 1.0 100% 1 1 100%
mtrt 11,317 5 1.0 1.0 100% 1 1 100%
raytracer 1,970 4 1.0 1.0 100% 1 1 100%
Eclipse: 844,000 21

Startup - - (61.7) (72.3) 117% (68) (81) 119%
NewProj - - (63.9) (74.6) 117% (70) (83) 119%
Build - - 72.3 86.9 120% 83 102 123%

Jigsaw 49,000 77 21.8 26.0 120% 33 35 106%
FtpServer 39,000 11 20.3 27.7 136% 27 35 130%
Total 945,000 117.5 144.6 123% 147 176 120%

Table 17.1: Races Detected By Embracer and FastTrack. Parenthesized numbers
are not included in totals.

Build: Launch Eclipse, create a new Java project, build a project containing

50,000 lines of code, and shut down.

As a measure of complexity, more than 4000 classes were loaded and instrumented when

executing the Eclipse-Build benchmark. It is unusual within the research community

to run dynamic analysis tools on benchmarks of this size and complexity.

Excluding the Java standard libraries, all classes loaded by benchmark pro-

grams were instrumented. In all experiments, we used a fine granularity for array

accesses, with a distinct shadow object for each index in an array. Like FastTrack,

our tool includes special processing for the barrier operations in these benchmarks and

does not report race conditions inside barrier code. We ran these experiments on a

machine with 12 GB memory and two cores clocked at 2.8 GHz, running Mac OS X

10.6.1 with Java HotSpot 64-Bit Server VM 1.6.0.
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17.1 Coverage and prediction

Since the central contribution of Embracer is its increased coverage, we

compare its coverage with the FastTrack race detector [62], which is based on the

happens-before relation. We ran each benchmark 10 times, simultaneously applying

both Embracer and FastTrack to each trace to provide an objective comparison

over precisely the same set of traces. Table 17.1 presents (in the “Average Per Run”

columns) the average number of races detected in each run. For clarity, we omit bench-

marks from the table that had 0 races for both tools. To avoid double-counting, the

totals exclude the Eclipse Startup and NewProj benchmarks, since they are essentially

subsumed by the Build benchmark. These results show that, although Embracer is

about twice as slow as djit+, Embracer detects 20-23% more races than FastTrack

for reactive programs.

Table 17.1 also reports the lines of code for each benchmark. For the larger

benchmarks, these numbers were calculated by totaling the number of lines of code

in each class that was actually instrumented when running the benchmark. The total

number of source lines of code for Eclipse alone is several million. Of the omitted

benchmarks, lufact, moldyn, series, sor, and sparse were all 4 threads and between

1,000 and 1,600 loc; colt has 11 threads and 111,000 loc; and crypt has 7 threads

and 1,200 loc.

17.1.1 Relation to CP

Examining the results for CP race detection (Appendix A) and Embracer, we

find that race prediction has the most dramatic results when run on reactive programs,

including GUIs and webservers. We believe this is because in our benchmark set, we

have already found most of the (few) races for the compute-bound benchmarks with a

happens-before analysis, while the reactive benchmark set is much more nondetermin-
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Time Slowdown
Relaxed
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SCMM
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colt 25,644 16.1 0.8 0.9 1.0 0.9 0.9
crypt 1,241 0.4 8.5 19.7 65.7 74.0 77.9
lufact 1,627 47.1 0.3 0.3 0.4 0.5 0.6
moldyn 1,402 8.6 1.4 2.0 2.9 7.4 8.3
montecarlo 3,669 1.9 5.0 11.1 36.4 38.1 41.0
mtrt 11,317 0.7 10.2 11.1 13.8 14.7 14.9
raja 12,828 0.5 7.4 8.1 8.1 9.2 9.3
raytracer 1,970 1.2 5.8 14.0 23.1 87.9 94.9
series 967 2.0 1.6 1.6 1.7 1.7 1.7
sor 1005 0.8 6.4 7.3 13.0 14.7 15.6
sparse 868 0.5 7.8 22.9 49.0 92.3 111.5
Average 5.0 9.0 19.5 31.0 34.2

Table 17.2: Performance of Embracer; 10% over HBtool.

istic and involves many more threads and many more potential interleavings.

After 10 runs, race prediction (either with CP or Embracer) only provides a

bonus for the reactive programs: Jigsaw, FtpServer, and Eclipse. Unfortunately, the

trace-based CP-analysis does not scale well to the Eclipse benchmarks, which produce

multi-gigabyte sized traces. The results for CP-based prediction and Embracer for

Jigsaw and FtpServer (Table 17.1 and A.1) are very similar. For FtpServer, CP finds

7 additional races and Embracer finds 8 additional races, as compared with 10 runs of

a happens-before race detector. For Jigsaw, CP finds 3 additional races and Embracer

finds 2 additional races, as compared with 10 runs of a happens-before race detector.
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17.2 Performance

To evaluate the performance of Embracer, we compare it to three other

precise dynamic race detectors, all implemented on top of the same framework: Fast-

Track [62], djit+ [118], and HBtool. HBtool is an optimized happens-before race

detector with communication-order edges added; we include this in the table to to give a

better sense of the overhead entailed for tracking communication-order edges Table 17.2

compares the slowdown of each compute-bound benchmark under each of these four

race detectors, plus under Empty, which measures the overhead of our instrumentation

framework. For the results reported in this table, we ran Embracer without concurrent

happens-before race detection. However, we found that the embedded happens-before

race detector inside of Embracer does not significantly change the performance. Each

slowdown is the average of 10 runs; there was very little deviation across runs.

The results show that Embracer’s performance is competitive with HBtool,

despite its need to use significantly more complex data structures (such as H, E ,B); the

average slowdown of Embracer is 34 versus 31 for HBtool: a 10% overhead. The

memory overhead of Embracer compared with either HBtool or djit+ is also about

10%.

Both djit+ and FastTrack are noticeably faster because they use additional

optimizations to the HB relation that are valid for a relaxed memory model. We believe

that a tool implementation involving an extension of the MB relation targeted towards

relaxed memory models could also implement such optimizations and so offer compara-

ble performance to FastTrack, but exploring these issues remains a topic for future

work. To put these performance numbers in perspective, the race detector Helgrind

from the Valgrind suite [110] can have slowdowns of 300x [155].
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Part VI

SideTrack
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Chapter 18

Introduction

Atomicity guarantees that a program’s behaviour can be understood as if each

atomic block executes without interference from other threads. In Part VI, we focus

on dynamically detecting atomicity violations in traditional multithreaded programs.

Even if the observed trace is serializable, our online analysis can still infer that the

original program can generate other feasible traces that are not serializable. This work

was originally presented at the 2009 Workshop on Parallel and Distributed Systems:

Testing, Analysis, and Debugging (PADTAD) [171].

To illustrate this idea, consider the trace in Figure 18.1, where Thread 1 is

executing an atomic block containing two synchronized blocks, Thread 2 is executing a

single synchronized block, and the vertical ordering of the statements of the two threads

reflects their relative execution order. Here, beg(a) and end(a) demarcate the begin

and end of an atomic block (labelled a) within the execution trace. We use “...” to

indicate a (possibly empty) sequence of operations when we do not care about the actual

specific sequence. In future figures, fork(t) denotes forking thread t.

Clearly, this trace is serial and hence trivially serializable, and so a precise

atomicity checker such as Velodrome [66] would not detect any errors. A careful

analysis of this trace, however, shows that the synchronized block on l by Thread 2 could
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Figure 18.1: Observed Serial Trace

Thread 1 Thread 2
beg(a)

acq(l)
...
rel(l)

acq(l)
...
rel(l)

end(a)

acq(l)
...
rel(l)

have been scheduled in between the two synchronized blocks of Thread 1; the original

source program that generated the trace of Figure 18.1 is also capable of generating the

non-serializable trace shown in Figure 18.2.

Figure 18.2: Feasible Non-Serializable Trace

Thread 1 Thread 2
beg(a)

acq(l)
...
rel(l)

acq(l)
...
rel(l)

acq(l)
...
rel(l)

end(a)

Technically, the synchronized block of Thread 2 could diverge in this alter-

nate trace. The analysis presented in this part assumes that all synchronized blocks

terminate, and that the program is free of race conditions. This latter assumption

can be discharged by concurrently running an efficient precise race detector such as

FastTrack [62] or Goldilocks [51].

We would like to catch the violation of Figure 18.2 without having to observe
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it directly. Whenever the same lock is acquired twice within a transaction, there is a

vulnerable window between the two acquires where a culprit acquire by another thread

could cause an atomicity violation.

SideTrack Part VI introduces SideTrack, an online predictive atomicity analysis.

By observing the serial trace of Figure 18.1, our dynamic analysis can detect that the

source program contains an atomicity violation, even though that violation does not

manifest itself in the current trace. Thus, our analysis generalizes from the observed

trace to detect errors that are guaranteed to occur on another feasible trace. SideTrack

may sometimes produce false positives, e.g. in the case of infinite loops, killing threads,

or shutting down the Java Virtual Machine. However, in most cases the errors found

will be real.

Our analysis detects three kinds of errors – before-errors, in-errors, and

after-errors – depending on where the culprit acquire occurs in relation to the vul-

nerable window, as shown in Figure 18.4 (a), (b), and (c), respectively. In these figures,

the vulnerable window is depicted as a circled V. Prior precise dynamic atomicity tools

such as Velodrome only detect in-errors; SideTrack introduces the additional

ability to detect before-errors and after-errors.

Although the examples in Figure 18.4 are rather straightforward, in practice

generalizing from the observed trace without introducing false positives may be rather

involved. To illustrate some of the issues, consider an alternate trace shown in Fig-

ure 18.3, where the second synchronized block of Thread 1 forks Thread 2. In this

situation, the synchronized block of Thread 2 cannot be scheduled between the two

synchronized blocks of Thread 1 (this dependency is depicted with an arrow in the

figure).

Despite the similarities between Figures 18.1 and 18.3, the first trace reflects an

atomicity error in the source program, whereas the second trace does not. SideTrack
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Figure 18.3: Observed Serial Trace with Fork

Thread 1 Thread 2
beg(a)

acq(l)
...
rel(l)

acq(l)

fork(2)

@
@

@@R

rel(l)

end(a)

acq(l)
...
rel(l)

needs to perform a careful analysis of the happens-before relation of the observed trace

to detect situations where certain synchronized blocks could have been scheduled before

other synchronized blocks. SideTrack uses the standard technique of vector clocks to

provide a compact and efficient representation of this happens-before relation. Side-

Track tracks the relative timing of synchronization operations and flags an error if

an operation by another thread is concurrent with one of the operations flanking a

vulnerable window.
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Figure 18.4: Three Kinds of Atomicity Violations

beg(a)
  acq(l)

  rel(l)

  acq(l)

  rel(l)
end(a)
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Thread 1 Thread 2
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(a) before-errors
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end(a)
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Thread 1 Thread 2
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    acq(l)

    rel(l)
   ...

(b) in-errors

Thread 1 Thread 2

beg(a)
  acq(l)

  rel(l)

  acq(l)

  rel(l)
end(a)

  ...

  ...

V

    acq(l)

    rel(l)
   ...

(c) after-errors
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Chapter 19

Foundations

SideTrack builds off of the foundations presented in Part III in a variety of

ways. In this chapter, we make the additional formal background required by Side-

Track clear.

For SideTrack, we extend the set of explicitly listed operations that thread

t can perform to also include:

• begin l(t) and end l(t), which demarcate each atomic [66] (or deterministic [126])

block labelled l;

• fork(t, u), which forks a new thread u;

• join(t, u), which blocks until thread u terminates.

Traces fulfill expected constraints when forking and joining; for example, no operations

by a thread u occur in a trace prior to the forking of thread u.

We also need to extend the notion of conflict to the following additional con-

dition:

• Fork-join conflict: one operation is either fork(t, u) or join(t, u) and the other

operation is by thread u.
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A transaction in a trace α is the sequence of operations executed by a thread

t starting with a begin l(t) operation and containing all t operations up to and including

a matching end l(t) operation. To simplify some aspects of the formal presentation, we

assume begin l(t) and end l(t) operations are appropriately matched and are not nested

(although our implementation does support nested atomic specifications).

In a serial trace, all operations from each transaction are grouped together

and not interleaved with the operations of any other transaction. A trace is serializable

if it is equivalent to a serial trace.

If two operations in a trace have a fork-join or program order conflict, then we

say they have an enables conflict. The enables relation ≺α is the smallest transitively-

closed relation on operations in α such that if operation a occurs before b in α and a

has an enables conflict with b, then a enables b.

A lock operation a in α is concurrent with a later lock operation b by a different

thread unless there exists an operation c between a and b such that a <αHB c and c ≺α b.

This is a tricky definition and is important for the later discussion, so it is worth

developing the intuition behind it. In essence, in a hypothetical alternate trace where b

occurs before a, c would also need to occur before a. However, once the happens-before

edge between c and a is reversed, the thread that executed c may take an alternate path

of execution. Since c enables b, this means that b may not occur if c occurs earlier.

In any good definition of concurrent, two concurrent operations may execute

in either order. Therefore, to identify concurrent operations we need to ensure that

a dependency does not exist between them. The happens-before relation identifies

dependencies but is too restrictive; every pair of lock operations on the same lock are

related by happens-before. The enables relation is too weak; the lock operations on

m by different threads in Figure 20.2(a) are not related by enables, but it may not be

possible to execute them in a different order (Figure 20.2(b)).
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Chapter 20

Analysis

Our analysis detects situations where a feasible but not observed atomicity

violation can be predicted dynamically. Whenever the same lock is acquired twice

within a transaction, there is a vulnerable window between the two acquires where an

acquire by another thread could cause an atomicity violation. Our analysis keeps track

of these vulnerable windows, and flags an error if it detects that a feasible trace exists

that exploits a vulnerable window to cause an atomicity violation. We refer to the

external acquire that could occur in the vulnerable window as a culprit acquire.

Note that when predicting feasible traces dynamically, it is not possible to

predict the entire trace. For example, we can predict that a lock acquire could have

occurred between the two previous acquires, but the trace after that point may not be

predictable based on the information obtained from the first trace. Instead, our analysis

can only predict that there exists some alternate trace with an atomicity violation,

where the alternate trace shares a prefix with the observed trace and executes certain

synchronized blocks in a certain order.

Because of these inherent limitations in our ability to generalize from the ob-

served trace, some traces that appear at first glance to have a predictable atomicity

violation turn out to be more complicated upon closer inspection. For example, con-
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sider the program in Figure 20.1, which could produce the trace in Figure 20.2(a). In

this trace, it appears the synchronized block of Thread 2 could execute inside the vul-

nerable window of Thread 1. However, if the read of b by Thread 2 executes before the

write to b by Thread 1, we can no longer predict the subsequent execution of Thread

2, and in particular cannot guarantee that Thread 2 will still synchronize on the lock

m (Figure 20.2(b)). The notion of concurrency defined in Section 19 captures these

constraints.

Figure 20.1: Example Program STExample

1 class STExample {

2 Mutex m, l;

3 boolean b;

4 static STExample e = new STExample();

5

6 atomic void vulnerableFunction() {

7 synchronized(m) { ... }

8 synchronized(m) { ... }

9 }

10

11 void setb() {

12 synchronized(l) { b := true; }

13 }

14

15 atomic void checkb() {

16 synchronized(l) {

17 if (b) { synchronized(m) { ... } }

18 else { ... }

19 }

20 }

21

22 public static void main(String[] args){

23 fork { e.vulnerableFunction(); e.setb(); }

24 fork { e.checkb(); }

25 }

26 }

As stated in the introduction, our analysis detects three different kinds of errors

(before-errors, after-errors, and in-errors), depending on where the culprit

acquire occurs in relation to the vulnerable window.
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Figure 20.2: A non-vulnerable atomic block due to the happens-before edge
on the lock l, which protects the variable b.

Thread 1 Thread 2
beg(a)

acq(m)
...
rel(m)

acq(m)
...
rel(m)

end(a)

acq(l)

w(b)

rel(l)

acq(l)

r(b)

acq(m)
...
rel(m)

...

rel(l)

1

V

(a) Thread 2 synchronizes on lock m.

V

Thread 1 Thread 2
beg(a)

acq(m)
...
rel(m)

acq(m)
...
rel(m)

end(a)

acq(l)

r(b)
...

1

(b) Thread 2 may not synchronize on lock m, due
to an alternate control flow.
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In a before-error, the culprit acquire occurred before the vulnerable win-

dow, as illustrated in Figure 18.4(a). To detect before-errors, the analysis records

the vector clock of the most recent acquire of each lock. When a lock is first acquired

in an atomic block, the analysis checks if that acquire is concurrent with the previous

acquire of that lock, via a vector clock comparison. If the two acquires are concur-

rent, then that lock is recorded as being potentially interfering in that atomic block; if

the atomic block subsequently re-acquires that lock, then a before-error atomicity

violation is reported.

Note that it is not enough to keep track of the most recent release of each lock.

It is possible for a lock release by Thread 1 to be concurrent with an acquire of the same

lock by Thread 2, while the corresponding acquire by Thread 1 enables the acquire by

Thread 2. In the most extreme case, Thread 1 could fork Thread 2 while holding the

the lock.

In an in-error, the culprit acquire occurs in the vulnerable window, as in

Figure 18.4(b). Other dynamic atomicity analysis tools that do not generalize to ad-

ditional traces typically catch in-errors; an in-error represents an actual atomicity

violation in the observed trace. We catch in-errors inside the vulnerable window,

when the program is about to execute the second acquire within the transaction. There

is an atomicity violation if a thread is about to acquire the same lock twice within a

transaction and discovers the last release of that lock is concurrent with the acquire

about to happen.1

In an after-error, the culprit acquire occurs after the vulnerable window,

as in Figure 18.4(c). We catch after-errors when the program is about to execute

the culprit acquire. We keep track of the most recent vulnerable window for every lock.

If the vector clock for an acquire by a different thread is not later than the vulnerable
1Concurrent operations are by different threads, so this would mean that another thread acquired

the lock.
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window, than that thread could have executed the acquire in the vulnerable window.

20.1 Analysis formalization

Based on these ideas, we now formally define our atomicity analysis as an

online algorithm based on an analysis state ω = (C, V,A,R,H, I) where:

• C : Tid → K records the vector clock of the current operation by each thread;

• V : Lock → K records the vector clock of the most recent vulnerable window for

each lock;

• A : Lock → K records the vector clock of the last acquire of each lock;

• R : Lock → K records the vector clock of the last release of each lock;

• H : Tid → 2LOCKS ∪ {NotInX} records the set of locks held within the current trans-

action by each thread, or NotInX if that thread is not currently within a transaction;

and

• I : Tid → 2LOCKS records the set of potentially interfering locks for each thread.

In the initial analysis state, all vector clocks are initialized to ⊥, except each Ct starts

at inct(⊥) to reflect that the first steps by different threads are not ordered.

ω0 = (λt. inct(⊥),

λm.⊥,

λm.⊥,

λm.⊥,

λt. NotInX,

λt. ∅)
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Figure 20.3 shows how the analysis state is updated for each operation a of

the target program.

The first rule [ST enter] for begin l(t) records that thread t is in a new trans-

action by switching Ht away from NotInX to ∅, and resets the set of interfering locks.

The complementary rule for end l(t) records that t is no longer in a transaction. Here,

H is a function, Ht abbreviates the function application H(t), and H[t := V ] denotes

the function that is identical to H except that it maps t to V . Changes to the instru-

mentation state are expressed as functional updates for clarity in the analysis rules, but

are implemented as in-place updates in our implementation.

Read and write operations do not affect the analysis state. If required, race

conditions can be detected by running SideTrack concurrently with a race detector

such as FastTrack [62]. We do not yet consider reads and writes of volatile variables,

which create nonblocking synchronization, although we believe we can adapt our analysis

to handle these constructs.

We update vector clocks for fork and join operations to reflect the structure

of the enables relation. The rule [ST fork] for fork(t, u) performs one “clock tick”

for thread t and sets the vector clock associated with u to be greater than previous

operations by thread t. The rule [ST join] records that the last operation of the joined

thread enables the join operation. The vector clock for the joined thread is incremented

to preserve the invariant that the current vector clocks for each running thread are

incomparable.

There are three analysis rules associated with an acq(t,m) operation. All three

rules share three common antecedents which:

1. Update the vector clock for t to reflect that the current time for t is later than
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the previous release of m;

C ′ = C[t := Ct tRm]

2. Update the last acquire for m appropriately; and

A′ = A[m := Ct]

3. Report an after-error if the vulnerable window for m is not before the current

clock for t:

if Vm 6v Ct then after-error

The rule [ST outside acquire] applies to acquires that are not within a

transaction, and simply performs the above three actions.

The rule [ST first acquire] applies the first time a thread acquires a lock

within a transaction. We add m to the set of locks Ht acquired within that transaction,

and check if the previous acquire of m was concurrent. If so, we add m to the set It of

potentially interfering locks for that thread.

The rule [ST second acquire] applies the second time a thread acquires a

lock within a transaction. We record the new vulnerable window for m in Vm. We flag

a before-error if there is a previous interfering lock that could have executed after

the first acquire by t. We flag an in-error if the previous release of m is not before

the current clock for t. All previous operations by t, including the first acquire of m by

t, are before the current clock of t. Therefore, if Rm 6v Ct, then another thread released

(and previously acquired) m between the two acquires by t.

The rule [ST release] for rel(t,m) updates the vector clock associated with

the latest release for m. We also perform one clock tick for thread t.
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20.2 Examples

Figure 20.4: Illustration of the Analysis State When Discovering an
after-error

⟨5,0,...⟩

⟨5,0,...⟩

⟨6,0,...⟩

rel(0,m)

⟨0,3,...⟩

⟨0,3,...⟩

⟨0,3,...⟩

⟨0,0,...⟩

⟨0,0,...⟩

⟨0,0,...⟩

⟨6,0,...⟩

⟨6,0,...⟩

⟨0,0,...⟩

⟨0,0,...⟩

⟨5,0,...⟩

⟨5,0,...⟩

⟨6,0,...⟩

⟨0,3,...⟩

⟨0,3,...⟩

⟨6,0,...⟩

⟨7,0,...⟩

⟨..⟩⟨..⟩

⟨m..⟩

⟨m..⟩

⟨m..⟩

⟨m..⟩

⟨..⟩

⟨..⟩

⟨..⟩

⟨..⟩

acq(0,m)

rel(0,m)

acq(0,m)

acq(1,m)

V

Vm �� C1: after-error

⟨6,3,...⟩ ⟨6,0,...⟩ ⟨6,0,...⟩⟨7,0,...⟩ ⟨m..⟩ ⟨m..⟩

C0 H0 C1 H1 Vm Rm

Figure 20.4 shows how vector clocks are updated on a sample trace fragment

involving an after-error. The I and A parts of the analysis state play no part in

discovery of after-errors, so they are omitted from the figure for simplicity. After

the first release by thread 0, C0 is incremented from 〈5, 0, . . .〉 to 〈6, 0, . . .〉 and Rm is set

to 〈5, 0, . . .〉. When m is acquired a second time by thread 0, Vm is set to the current

time for thread 0 (〈6, 0, . . .〉). At the second release by thread 0, C0 is incremented
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again from 〈6, 0, . . .〉 to 〈7, 0, . . .〉 and Rm is updated to 〈6, 0, . . .〉. When Thread 1 goes

to acquire m, an after-error is reported because Vm 6v C1. Once the after-error

is reported, C1 is joined with the time of the last release (Rm).

Figure 20.5: SideTrack flags the trace on the right with an atomicity viola-
tion, but not the trace on the left.

Thread 1 Thread 2
acq(m)

acq(l)
...
rel(l)

rel(m)

beg(a)

acq(l)

acq(m)
...
rel(m)

acq(m)
...
rel(m)

rel(l)

end(a)

Thread 1 Thread 2
beg(a)

acq(l)

acq(m)
...
rel(m)

acq(m)
...
rel(m)

rel(l)

end(a)

acq(m)

acq(l)
...
rel(l)

rel(m)

The example in Figure 20.5 illustrates that after-errors are more amenable

to detection than before-errors. SideTrack finds the after-error in the right

trace because the acquires of m by the two threads are concurrent. In the left trace, the

synchronization on l means that the acquires of m are not concurrent: the acquire of

l by Thread 2 (and, by transitivity, the acquire of m by Thread 2) happens-before the

acquire of l by Thread 1 and the acquire of l by Thread 1 enables the acquires of m by

Thread 1. Therefore, a before-error is not detected in this case.
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Chapter 21

Implementation

We have developed a prototype implementation, called SideTrack, of our

dynamic atomicity analysis. SideTrack is a component of RoadRunner, discussed

in Chapter 9. By default, SideTrack checks for the specification that all methods

are atomic. This lifts transactions to the method call level, and nested transactions

represent nested method calls.

Each of the analysis rules in Figure 20.3 consists of one or more antecedents

and a single consequent. Three rules are necessary to describe the event handler for

acquires. When implementing these rules, it is useful to break down the antecedents into

conditionals, checks, and updates. Conditionals indicate where the code must branch

in an event handler. Checks indicate when the analysis should flag an error. Updates

describe how the next analysis state is obtained.

For example, the rule [ST first acquire] has two branches with negated

counterparts in different rules: Ht 6= NotInX and m /∈ Ht, and one internal branch: if

Am v Ct.... The crucial check is Vm v Ct. If this check is violated, SideTrack issues

an after-error warning.
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Blame assignment Our analysis as presented is relatively straightforward to im-

plement, and successfully flags feasible atomicity violations. Accurate blame assign-

ment requires significant extra work, especially since before-error and after-error

atomicity violations do not manifest in the observed trace.

In the presence of nested transactions, it is not sufficient to report the (inner)

transaction where the second acquire of a vulnerable window occurs. To illustrate this

difficulty, consider the program shown in Figure 21.1, where we assume that all methods

should be atomic.

Figure 21.1: Program Example Where Precise Blame Assignment Is Neces-
sary.

func a() {
  b();
}

func b() {
  d();
  c();
}

func c() {
  d();
}

func d() {
  sync(m) {...}
}

Atomic

Potentially 
not atomic

While methods c and d are atomic, a and b potentially have atomicity viola-

tions. When we encounter the second acquire in the vulnerable window inside of b, the

call stack may look like a:b:c:d. However this call stack is not precise enough to tell

us which method is non-atomic. In fact, we need the call stack for the first acquire of m

inside the vulnerable window as well: a:b:d. We need to identify the common prefix in

the two stacks, and report all methods in this prefix as non-atomic (here, a and b). We

store a call stack for the first and second acquires for the last vulnerable window in the
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instrumentation state associated with each lock, and call stacks for all locks acquired in

the current transaction in the instrumentation state associated with each thread. With

a suitable immutable linked-list representation, recording such a stack is a constant-time

operation.

Tool complementation We can combine SideTrack with Velodrome [66], a

sound and complete dynamic atomicity analysis, to increase coverage. Velodrome

finds more atomicity violations from a particular trace than SideTrack, since Velo-

drome also looks for atomicity violations involving accesses to shared variables as well

as locks. However, SideTrack finds feasible errors that Velodrome misses, since

the latter does not generalize its analysis to other feasible traces. Thus the two tools

are compatible and complementary, just like the combination of Embracer and tradi-

tional happens-before race detection. Since RoadRunner supports tool composition,

it is straightforward to run these two together.

115



Chapter 22

Evaluation

We present encouraging experimental results for SideTrack. We ran these

experiments on a machine with 3 GB memory, 2.16 GHz dual-core CPU, running Mac

OS X 10.5.6, and with Java HotSpot 64-Bit Server JVM 1.6.0.

Our benchmark set includes: elevator, a real-time discrete event simulator

[161]; colt, a library for high performance scientific computing [30]; jbb, the spec

jbb2000 simulator for business middleware [143]; hedc, a warehouse web-crawler for

astrophysics data [161]; barrier, a barrier synchronization performance benchmark [81];

philo, a dining philosophers application [51]; tsp, a solver for the traveling salesman

problem [161]; and sync, a synchronization performance benchmark [81]. Benchmarks

from Java Grande [81] were configured to use 4 threads and the base data set. This set

totals over 200K lines of code. Excluding the Java standard libraries, all classes loaded

by benchmark programs were instrumented.

To check for atomicity violations, we assumed that all methods should be

atomic. In practice this assumption works fairly well; previous experiments have vali-

dated that atomicity is a fundamental design principle for concurrency [61, 98].

For each benchmark, Table 22.1 reports both the total number of methods

with atomicity violations (Column 2) as well as the error count for each type of atom-
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elevator 5 3 1 5 2 4 4
colt 9 4 7 9 2 2 2
jbb 10 7 5 10 5 5 5
hedc 4 1 4 4 0 0 0
barrier 1 1 1 1 0 0 0
philo 1 1 1 1 0 0 0
tsp 4 4 4 4 0 0 0
sync 4 4 4 4 0 0 0
Total 38 25 27 38 9 11 11

Table 22.1: Atomicity Errors Found by SideTrack.

icity violation (Columns 3 - 5). Note that there is significant overlap between the

methods reported by each kind of violation. To further clarify the benefit of Side-

Track’s predictive analysis, Column 6 reports the number of before-errors that are

not in-errors (and so not detected by earlier precise tools), and Column 7 reports on

after-errors that are not in-errors. Finally, the last column reports on errors that

are either before-errors or after-errors, but not in-errors, and so most clearly

summarizes the improvement achieved via predictive analysis. SideTrack’s predictive

ability catches an additional 11 errors, in addition to the 27 in-errors: an improvement

of roughly 40%. Interestingly, all 11 of these additional violations were found by the

after analysis, which suggests that the after analysis generalizes better than the before

analysis.

To confirm that the predicted errors are not false positives, we investigated

the error messages in the “Predicted Total” column by inspecting the program source

117



Table 22.2: SideTrack Benchmark Performance Results

Slowdown
Num Base Runtime

Programs Threads loc (Seconds) Empty SideTrack

colt 11 111,421 16.2 1.2 1.2
barrier 4 774 55.2 1.0 1.0
tsp 5 706 1.1 2.6 3.7
sync 4 650 68.8 0.8 0.9
crypt 7 1,241 0.6 3.9 4.3
moldyn 4 1,402 1.7 3.1 4.2
forkjoin 187 591 0.04 45.0 47.0
lufact 4 1,627 0.3 8.8 9.4
montecarlo 4 3,669 2.4 2.3 2.6
raytracer 4 1,970 1.5 5.4 13.9
series 4 967 2.9 1.5 1.8
sor 4 1,005 0.3 5.8 7.0

code. We found that it was easy to pinpoint the errors with the blame assignment

information. All were judged to be vulnerable to atomicity violations. However, some

of these violations may be benign.

Table 22.2 reports on the performance of our analysis. For each of the compute-

bound benchmarks, we report on the running time of that benchmark (without any

instrumentation), and on the slowdown incurred by RoadRunner when running with

the Empty tool (which just measures the instrumentation overhead but performs no

dynamic analysis); and the slowdown when run with SideTrack. We also measured

performance for all other benchmarks in the Java Grande suite; SideTrack reported

no errors (of any of the three types) for these additional benchmarks. The average

slowdown for SideTrack was 8.1x, as compared with a slowdown for the Empty tool

of 6.8x.

There are a couple outliers. The forkjoin benchmark taxes our instrumen-

tation framework by forking and joining almost 200 threads, each of which has an as-

sociated instrumentation state. Additionally, the running time of this benchmark is so

short that other effects (like printing) may dominate the slowdown. Without forkjoin,

the slowdown for SideTrack is 4.5x and the slowdown for the Empty tool is 3.3x. The
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13.9x slowdown for raytracer is a result of the large number of small method calls in

this benchmark, each of which must be recorded for blame assignment.

The results show that SideTrack provides a significant improvement in per-

formance of prior dynamic atomicity analyses, such as SingleTrack [126] (10.4x),

Velodrome [66] (10.3x), and Atomizer [61]. This performance improvement is largely

because SideTrack does not analyze memory reads and writes, and instead assumes

that the target program is race-free and any inter-thread communication is mediated via

synchronization idioms such as locks. If necessary, this race-free assumption can be ver-

ified by concurrently running an efficient race detector such as FastTrack [62], which

would incur an additional performance overhead of 10x. We believe using separate anal-

yses to verify race-freedom and atomicity offers benefits both in terms of performance

and modularity of the analysis code.
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Part VII

Tiddle

120



Chapter 23

Introduction

Part VII is focused on Tiddle: a language-agnostic domain-specific language

(DSL) for describing trace behaviour. Tiddle can be used to generate deterministic tests

for validating dynamic analysis tools. This work was originally presented at the 2009

International Workshop on Dynamic Analysis (WODA) [127].

As discussed in Part II, many dynamic analysis tools exist for discovering con-

currency errors in programs. The tools are often intricate concurrent programs in their

own right. Testing dynamic analyses involves writing many small programs that exhibit

a fault (or do not exhibit a fault) to check if the analysis correctly runs. However,

since these tests must be multithreaded, they may not be deterministic! One (inade-

quate) method of attempting to force a deterministic schedule is to pepper yield() or

sleep() statements throughout the tests; this does not guarantee determinism, even

if the statements are placed properly. The tests must also contain a lot of boilerplate

code for setting up multiple threads. In short, they are both tedious and error-prone.

What is a better way of quickly testing dynamic analyses? It is our observation

that small traces exhibiting certain faults are a natural way of describing test cases.

Writing small traces on the whiteboard as an aid to discussion is natural. For example,

the easiest way to explain a data race is to produce an example of one, and it is very easy
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to do just that with Tiddle. This observation is supported by user studies; modeling

failure traces is the only effective way to debug multithreaded programs [67].

We have created a trace description language, Tiddle, that captures basic con-

currency notions in execution traces. Our trace language provides a simple abstraction

of a multi-threaded program execution trace. We translate traces into deterministic

Java source code for the purpose of testing dynamic analyses. This guarantees that the

same execution trace results from every run of the program. We are able to achieve

this determinism using a key assumption: that the dynamic analysis framework can

optionally ignore specified method calls.

We have implemented a compiler, written in Haskell, which translates Tiddle

trace statements into deterministic concurrent programs written in Java source code.

The language and implementation is extensible, allowing customization to suit the needs

of the user. We also use Tiddle to generate a variety of traces that exhibit the same

behaviour as the source trace, so as to verify that a dynamic analysis behaves as expected

on equivalent traces, or to generate nondeterministic small tests that exhibit a particular

type of multithreading error.

We have used Tiddle as a development aide for dynamic analyses. As a concrete

example, we developed SideTrack (Part VI) using Tiddle. During implementation, we

discovered a bug in how SideTrack handled nested locking by a simple Tiddle trace.

When we extended our analysis with another atomicity violation pattern, it was easy

to test that the new pattern worked properly. Finally, when refactoring SideTrack’s

implementation, we used all the Tiddle traces as a regression test suite. In addition,

we have used Tiddle to test the SingleTrack [126] deterministic parallelism checker. To

date, 70 or so Tiddle programs have been written.
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Chapter 24

Methodology

24.1 Tiddle Grammar

We describe the grammar of Tiddle. A BNF-style representation is given in

Figure 24.1.

Figure 24.1: Tiddle Grammar

trace ::= trace op
| op

op ::= rd Tid Var (Val)
| wr Tid Var (Val)
| acq Tid Lock
| rel Tid Lock
| fork Tid Tid
| join Tid Tid
| beg Tid Label
| end Tid Label

Tid ::= Int
Var ::= String
Val ::= Int
Label ::= String
Lock :: = String

In Tiddle, a trace is a list of operations. Each operation belongs to a thread,

123



and the thread identifier is indicated by an integer in the first argument. Reads and

writes specify a variable and optionally a value. If a read operation specifies a value, an

assert statement is added to verify that the read returned the expected value; variables

are initialized to 0 by default. Since the generated programs are deterministic, this is

simply a check to make sure the trace is specified as desired. Acquires and releases

specify a monitor lock. Forks and joins specify the thread identifier for the forked or

joining thread. Begin and end operations demarcate atomic blocks, or transactions [61].

In Java, the reads and writes correspond to accesses to a static field. The

acquires and releases correspond to a synchronized block. Forks and joins correspond

to Java’s start() and join() methods. Begin and end operations are Java blocks an-

notated as atomic. Alternatively, begin and end operations can denote method bound-

aries. This allows the generated programs to be checked with a general “all methods

are atomic” specification. These generated Java programs represent simple, straightfor-

ward examples that embody the buggy pattern described by the corresponding Tiddle

trace. The implementation could be easily extended to other languages that support

concurrency and mutable fields (e.g. C++); this extension would involve some pretty

printing changes in the module that translates Tiddle ASTs to Java ASTs.

24.2 Data Races

Tiddle operations support modeling data races (defined in Section 1.3.1). Our

compiler generates working, complete Java code from a partial trace. There is no need

to write out the full execution trace of a program; only the relevant lines of the trace

need to be specified and other operations (e.g. forking all the threads involved) are

added automatically. Here is a data race specified in two lines (x is initially 0):

rd 1 x
wr 2 x 1

There is no explicit synchronization to prevent the trace from being reordered to:
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wr 2 x 1
rd 1 x

so the final value of x – 0 or 1 – depends on the nondeterministic schedule of opera-

tions. Specifying this data race is only two lines of Tiddle code, but these two lines are

translated to more than 50 lines of Java source code (Figure 24.2).

24.3 Atomicity Violations

Atomicity (discussed in Section 1.3.2) is a general concurrency specification

that is focused on non-interference of code blocks. We can straightforwardly describe

an atomicity violation in Tiddle:

beg 1 a
rd 1 x
wr 2 x
rd 1 x
end 1 a

The atomic block is indicated by the begin and end operations. For this trace

to have the property of atomicity, it must be equivalent to a serial trace where the

atomic block is executed without other threads interleaving. Here, the write to x in

between two subsequent reads of x means that this trace is not equivalent to any serial

execution of the atomic block. This trace compiles to about 70 lines of Java source code.

Note that the operations and their semantics reflect the kind of dynamic anal-

yses we are interested in for this dissertation: detecting data races and atomicity viola-

tions. Tailoring the Tiddle language to operations for different dynamic analyses, such

as detecting atomic-set-serializability violations [71] or new types of concurrency bugs

should be straightforward.
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Figure 24.2: Generated Java Code with Race

1 public class Test {

2 static int x = 0;

3 static CyclicBarrier cb = new CyclicBarrier(2);

4 static CyclicBarrier cc = new CyclicBarrier(2);

5 static int numThreads = 2;

6

7 static public void await(CyclicBarrier c)

8 throws BrokenBarrierException,

9 InterruptedException {

10 c.await();

11 }

12

13 public static void main(String[] args) {

14 final Thread t2 = new Thread() {

15 public void run() {

16 try {

17 int _z = 0; //for reads

18 await(cc);

19 await(cb);

20 await(cc);

21 x = 1;

22 await(cb);

23 } catch (InterruptedException e) {

24 e.printStackTrace();

25 } catch (BrokenBarrierException e) {

26 e.printStackTrace();

27 }

28 }

29 };

30 final Thread t1 = new Thread() {

31 public void run() {

32 try {

33 int _z = 0;

34 await(cc);

35 _z = x;

36 await(cb);

37 await(cc);

38 await(cb);

39 } catch (InterruptedException e) {

40 e.printStackTrace();

41 } catch (BrokenBarrierException e) {

42 e.printStackTrace();

43 }

44 }

45 };

46 t1.start();

47 t2.start();

48 }

49 }
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24.4 Determinism and Synchronization

Race conditions and atomicity violations are nondeterministic by nature. A

test program that has such errors is difficult to use, because the error may manifest

rarely and only under specific conditions. Thus, test programs should be deterministic,

even those with nondeterministic bugs.

We use barrier synchronization to implement determinism for otherwise non-

deterministic test programs. The test program generated from the specification trace

executes only one operation per barrier. All threads in the program move in lockstep

from one barrier call (await()) to the next. Between each barrier call, precisely one

thread executes an operation, while all other threads simply race to the next barrier

and block.

We assume that dynamic analysis frameworks may elide certain method calls

from being instrumented. We believe this is a reasonable assumption for any dynamic

analysis framework, since deciding what to instrument depends on what analysis is being

performed. With this capability to elide method calls, we ignore all calls to await()

when analyzing the test program. The program continues to run deterministically;

however, the analysis tool will not observe the barrier synchronization. If barrier calls

were not elided from the analysis, the test program will still run deterministically.

However, the analysis tool may now emit false positives (or negatives) because the

tool reacts to the observed contention on the barrier.

Forks and joins present interesting synchronization issues, because these op-

erations change the number of threads racing to a barrier. We use the CyclicBarrier

class from the Java standard library, which allows recycling the barrier between waits,

although a BrokenBarrierException gets thrown if the number of threads to trip a

barrier is changed while some threads are still blocking on that barrier. We solve this

problem by using two CyclicBarriers, so that the second of the two barriers can be
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reset to a new value while the other threads are all blocking on the first one.

Optionally, all barrier synchronization may be elided during code generation

to produce small nondeterministic programs that exhibit a particular type of multi-

threading error. This way, Tiddle can still be used for test generation in situations

where ignoring await() calls is not possible. These could also be small test cases for

testing static analysis tools. Alternatively, Tiddle can be configured to add sleep() or

yield() statements to the (barrier-free) code, although the test programs will still be

nondeterministic.

24.5 Code Generation

The compiler for the Tiddle language is written in Haskell [76]: a lazy, pure,

strongly-typed functional language. Haskell has powerful constructs that make it easy

to concisely define and manipulate abstract syntax trees (ASTs). We used Alex [101]

and Happy [100] (Haskell versions of Lex and Yacc [95]) to generate a lexer and parser,

respectively. The Haskell implementation generates a (custom) Java AST from the

trace AST provided by the parser. Code generation is handled by a separate pretty

printer [116] for the Java AST. Haskell is a terse language: our entire implementation

totals about 300 lines of code. The functional style of Haskell make it a natural choice for

AST generation and manipulation; we chose this language because of the combination

of conciseness and expressivity, and because it was fun to use.

24.6 Equivalent Traces

In addition to generating the code for one particular trace, Tiddle can also gen-

erate all traces equivalent (Chapter 7) to a particular trace. We scan through the trace

to find source operations that have only outgoing happens-before edges, and then recur-

sively add all interleavings of operations respecting happens-before order. In essence,
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this pulls out all equivalent traces by exploring different paths through the nodes in the

happens-before graph for a trace, only adding an operation when all prior operations

that happen-before it have been added to the trace. A series of equivalent traces can be

compiled into one (long) Java program, enabling a single run of the analysis to confirm

that all equivalent traces find the same errors (or lack thereof).
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Part VIII

Future Work
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Chapter 25

Future Work

In this dissertation, we have presented a variety of techniques related to dy-

namic prediction of concurrency errors. To enable precise dynamic prediction of data

races, we introduced the CP relation. To further address dynamic predictive race detec-

tion, we then introduced the must-before relation and accompanying dynamic analysis

tool (Embracer) that is not precise but enables online prediction. We also described

SideTrack, a lightweight dynamic analysis tool that generalizes from an observed

trace to predict additional atomicity violations. Lastly, we presented the Tiddle DSL

and compiler for deterministic testing of dynamic analysis tools using trace snippets.

There are several clear areas for future improvement. We have yet to develop a

fully online algorithm that works with relaxed memory models incorporating the ideas

from the CP relation or Embracer. Such an algorithm should have a clear perfor-

mance improvement over Embracer, as it could implement a variety of optimizations

targeted towards relaxed memory models. We have not yet discovered a way to analyze

for CP-races using techniques such as vector clocks (as is derived for the must-before

relation in Chapter 15), nor have we discovered a full CP implementation that only does

online reasoning (i.e. never needs to “look back” in the execution trace); these remain

challenging questions for future work.

131



SideTrack could also be expanded to find new classes of atomicity violations

beyond the specific locking patterns this tool now targets. It is possible that the CP

relation could be adapted to perform atomicity detection, although we expect that such

an implementation would be much more complex than SideTrack.

Another direction for future work is to better characterize the space of dynamic

concurrency error prediction. There may be additional precise relations that are weaker

than CP or otherwise provide an alternative to CP. Due to the many challenges we had

developing CP (illustrated by the various tricky traces presented in Chapter 12), we

envision the development of future relations to be a major undertaking.

An additional area for future work is extending the concurrency error pre-

diction techniques explored in this dissertation to new classes of concurrency errors.

There may be unique challenges to address when predicting deadlocks or determinism

violations. We could also explore incorporating details gleaned from static analyses to

improve the error detection capabilities of the techniques presented here.

A completely different direction is improving the error messages and other

output produced by dynamic analysis tools. Little is known about how real developers

use program analyses as part of their development workflow, or the most critical changes

that would improve the usability of such tools. Perhaps static information or witness

trace snippets could be incorporated into tool output to aid in the debugging process.

There are also areas of future work for Tiddle (Part VII). One potential exten-

sion would create small test programs to replicate faults, perhaps by recording buggy

traces of large programs to instantiate smaller programs that exhibit the same multi-

threaded bug. This is similar to record-and-replay, but replaying the problem instead of

program: perhaps better suited for prototyping dynamic analyses. Another way to take

Tiddle to the next level would be to develop it into a formal specification language for

bugs such as data races and atomicity violations. This specification language may serve

as an easier way of understanding safety properties through violation specifications.
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Chapter 26

Conclusion

This dissertation has demonstrated that dynamic analysis can discover con-

currency errors that do not manifest on the observed trace. We presented four tools to

enable predictive dynamic analysis:

1. CP relation: A relation for predictive race detection.

2. Embracer: A predictive online race detector.

3. SideTrack: A predictive online atomicity analysis.

4. Tiddle: A domain specific language (DSL) for testing dynamic analyses.

This dissertation includes two main contributions to predictive race detection:

the CP relation and the Embracer algorithm. The simplified tradeoffs of these two

approaches are summarized in Figure 26.1. Causally-precedes (CP) is a weaker relation

than the happens-before relation (upon which most precise dynamic race detectors are

built), yet is strong enough to enable precise race detection. The examples described in

Chapter 12 clarify why it is not easy to weaken HB without introducing false positives.

A single CP-based race detection run discovers several new races, unexposed by 10

independent runs of plain HB race detection. However, an efficient online algorithm
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Post-Mortem Online Algorithm

No False Positives CP relation Future Work

Maybe False Positives Prior Work Embracer

Figure 26.1: Simplified design space for predictive dynamic race detectors.

leveraging the CP relation remains a topic for future work. To address this gap, we

presented an imprecise must-before relation to enable online prediction. This relation is

leveraged by the Embracer algorithm to predict race conditions. Embracer detects

20-23% more races than a happens-before detector alone for the reactive programs

analyzed in this dissertation.

This dissertation also addresses predictive atomicity violation detection. We

showed how serializable traces can still reveal atomicity violations in the original pro-

gram and presented SideTrack, a lightweight dynamic analysis tool that generalizes

from an observed trace to predict atomicity violations that could occur on other feasible

traces. SideTrack identifies a class of atomicity violations that result from a particular

pattern: two acquires of the same lock inside an atomic block. Experimental results

demonstrate that the predictive ability increases the number of atomicity violations

detected by SideTrack by 40%.

Deterministic testing enables quick development of predictive dynamic analysis

tools but concurrent programs are often nondeterministic. A dynamic analysis devel-

oper is often interested in the behaviour of their analysis on specific execution traces,

such as the example traces from Chapter 12. We presented a methodology for determin-

istic testing of dynamic analysis tools using trace snippets. This methodology involves

a language-agnostic DSL for describing trace behaviour, Tiddle, and an associated com-

piler to translate Tiddle traces into deterministic concurrent Java programs.
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The four tools described in this dissertation represent an important first step

for dynamic prediction of concurrency errors. There are many topics of future work,

as described in Chapter 25, which will build off the research presented here. We look

forward to watching this future unfold.
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Appendix A

Experimental Results for CP

In this appendix, we reproduce preliminary experimental results for a CP-based

race detector for reference. CP reasoning, based on Definition 5, is highly recursive.

Notably, Rule (c) can feed into Rule (b), which can feed back into Rule (c). As a result,

we have not implemented CP using techniques such as vector clocks, nor have we yet

discovered a full CP implementation that only does online reasoning (i.e. never needs to

“look back” in the execution trace); these remain challenging questions for future work.

However, CP has an easy polynomial algorithm, derived directly from the definition

and straightforwardly expressible in the Datalog language. Please see the POPL 2012

paper [139] for more information on the Datalog-based implementation.

The results presented here are on a collection of multithreaded Java bench-

marks, mostly from previous studies [36, 51, 161]. The most substantial of our bench-

marks are:

• Jigsaw, W3C’s web server [154], coupled with a stress test harness.

• FtpServer, a high-performance FTP server implementation from The Apache

Foundation [150], coupled with a JMeter workload [151].

• StaticBucketMap, a part of the Apache Commons project, offering a thread-safe
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implementation of the Java Map interface. The code size of this benchmark is

small, but its driver exercises it thoroughly, resulting in a long trace.

To perform the CP analysis on the benchmarks, we used the RoadRunner

framework (Chapter 9) to dynamically instrument the bytecode of each benchmark at

load time. The instrumentation code creates a stream of events for field and array

accesses, synchronization operations, thread fork/joins, etc. We used this infrastructure

to perform an inexpensive happens-before race analysis and to also produce a trace

subsequently used for the post-mortem CP analysis. The CP analysis was thus explicitly

coded to report races if they were not also HB races (since the latter were discovered

and reported already). We conservatively translated accesses to volatile variables and

thread creation/join events into pseudo-lock accesses. The traces produced were quite

sizable even though stack-variable references are filtered out. The traces were then

reduced to only maintain events concerning shared memory locations, and to eliminate

re-accesses to the same variable by the same thread without intervening synchronization.

Each reduced trace was then imported into a database and analyzed using a Datalog

implementation [139]. Examining the intermediate results of our analysis indicates that

CP is a much weaker relation than HB: the number of CP edges computed by our

analysis (among synchronization operations) is typically as low as 10% to 20% of the

number of HB edges for these benchmarks. Thus, happens-before race detection often

considers events to be ordered when there is no semantic reason why they should be.

The first columns of Table A.1 show the main metrics for the benchmarks.

The benchmark size in LoC is not entirely representative of its complexity: much of

the code in a program’s directory is library code, not exercised at all. Conversely, much

of the code actually exercised is Java library code, never shown in the benchmark size.1

StaticBucketMap is the most extreme example: if we were to report its code size uni-
1Library code is still valuable to analyze: the code may not contain races, but may be used in an

unsafe way, exposing a race in client code.
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banking 145 762 522 10 1 1 +0
elevator 1.4k 25k 16k 5 0 0 +0
FtpServer 39k 992k 543k 11 21 27 +7
hedc 25k 102k 1.4k 6 5 5 +0
Jigsaw 49k 1,992k 42k 77 18 33 +3
philo 86 669 382 6 0 0 +0
pool1.2 8.4k 692 526 8 0 0 +0
pool1.3 24k 841 683 8 0 0 +0
StaticBucketMap see text 265k 133k 5 7 7 +0
stringBuffer 1.4k 223 178 8 0 0 +0
tsp 706 328k 381 4 0 0 +0
vector 26k 325 270 15 1 1 +0

Table A.1: Benchmark metrics and number of races detected by our CP analysis but
not found in 10 HB runs.

formly with the other benchmarks, it would come to 110KLoC. The directory contains

the entire Apache Commons Collections project, however. The main StaticBucketMap

class and test driver file are just 807 LoC. Neither of the two sizes is representative of

the code actually exercised, though the second is closer. Similar caveats apply to the

report of thread counts. This metric lists the total number of thread created, which can

be higher than the number of threads active simultaneously.

Table A.1 collects the experimental results. This table reports the races found

in a single HB run, in 10 HB runs, as well as the races found by CP in its single run but

never found in the 10 HB detector runs. Races are reported per-variable (i.e. dynamic

race instances are collapsed based on which data words they occur on). Still, multiple

races may have the same underlying cause (e.g. a single missing lock/unlock may fix

more than one race).
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Appendix B

CP Proof

In this appendix, we reproduce the soundness (precision) proof for the CP

relation for reference. Please see the POPL 2012 paper for more information [139].

The statement of the theorem applies only to one CP race. (And, since <CP

is a subset of <HB, every HB-race is also a CP-race.) That is, the theorem proof

establishes that either the “first” CP-race of a trace is an HB-race in some correct

reordering of the trace or we can produce a correct reordering with a deadlock. (The

idea of stating the soundness guarantee so that it applies to the first error reported is

standard [62, 66].) The first race is the one that finishes earliest in the total order of

the trace, i.e. a CP-race between events e1 by t1 and e2 by t2, with e1 <to e2, such that

that there is no CP-race between two events both of which appear before e2, as well as

no race between events e3-e2, with e3 appearing after e1 and before e2.

Although the theorem’s guarantee applies to only one race, we can conser-

vatively maintain soundness when reporting multiple races, at the cost of potentially

missing some. Specifically, once a CP-race (which may be merely an HB-race) is dis-

covered (and reported), the rest of the trace can be treated as if the CP-race were a CP

edge, thus hard-ordering the two racy events. This means that the soundness guarantee

of the theorem then applies to the next CP-race reported: any correct reordering of a
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restricted trace (i.e. one with extra CP edges) is a correct reordering of the original

trace. The drawback is that some CP-race nearby another CP race may not be reported

due to our conservative treatment.

The soundness theorem proved below is subtle: if our detector issues a warning,

there is either a correct reordering of the observed execution that exhibits an HB race, or

a reordering that exhibits a deadlock. Thus, the race soundness guarantee only applies

to deadlock-free programs, yet in practice a sound warning of a possible deadlock is just

as valuable as a warning of a race.

Theorem (CP is Sound). Given a trace tr with a CP-race, we can produce a tr′′ =CR tr

with either an HB-race or a deadlock.

Proof. Let the first race of trace tr be between events e1 and e2, with e1 appearing

before e2 in the trace. Being the first race means that there is no CP-race between two

events both of which appear before e2, as well as no race between events e3-e2, with e3

appearing after e1 and before e2.

Consider a trace tr′ such that:

• tr′ =CR tr and tr′ has the same first CP-race as tr, i.e. between events e1 by t1 and

e2 by t2, with e1 <
tr′
to e2.

• Among traces satisfying the above property, tr′ has minimal distance, in terms of

the number of operations in TOtr
′

between events e1 and e2 of the first CP-race.

(Intuitively, this means that all irrelevant events between e1 and e2 are correctly-

reordered out of the e1-e2 segment in trace tr′.)

• Among traces that satisfy the above properties, tr′ is one that also minimizes the

distance between e2 and every beginning of a critical section containing e1, from in-

nermost to outermost. That is, among traces that have the same (minimal) distance

between e2 and the innermost acquisition event k1 for a critical section containing e1,
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tr′ minimizes the distance between e2 and the second such lock acquire, among those

satisfying all the above tr′ minimizes the distance between e2 and the third such lock

acquire, k3, and so on, all the way to the outermost critical section containing e1.

We will refer to the last two requirements as the minimality property. For such a trace

tr′, we get important lemmas:

Lemma 1. All events e between e1 and e2 are such that

(a) e1 <HB e and e <HB e2

(b) e1 6<CP e and e 6<CP e2.

Proof. We prove each case separately.

(a) • Assume e 6<HB e2. Then we can move e and all events e′ that occur between e

and e2 such that e <HB e′ to the point right after e2. The result of the move

maintains program order. (Note that thread t2 is not affected by the move at

all, since we have already assumed that e 6<HB e2, therefore e cannot happen-

before any previous event in t2.) If this move (or any move in later proofs) is

not possible it is because of one of two reasons:

• It causes the result to not be a well-formed trace because the pairing of lock

acquisition/releases becomes invalid (i.e. a lock is acquired while held).

• The result is a valid trace t but t 6=CR tr
′ because a read now sees a different

written value.

The former means that the moved events have a common lock with some non-

moved event (say, f) that occurs before e2—an impossibility since in this case

e <HB f , hence f would be a moved event. The latter reason is also an im-

possibility since then a moved event would clash with a non-moved event, f . If

the two events were CP-ordered, then they would also be HB ordered, hence f
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would have moved. If the events were not CP-ordered then e1-e2 would not have

been the first race of tr′. Hence the move is possible, which violates the first

minimality property, therefore our assumption was false and e <HB e2.

• If e1 6<HB e, then we can move e and all events e′ that occur between e1 and e

such that e′ <HB e to right before e1. Again, with similar reasoning as above

(or as in Lemma 2, below) we get a contradiction.

(b) If either e1 <CP e or e <CP e2, then we would have had e1 <CP e2, per part (a)

and the definition of CP: a contradiction.

Lemma 2. Consider any lock acquire event a1 for a critical section containing e1. All

events e between a1 (inclusive) and e1 have a1 <HB e and if e1 <HB e2 then e <HB e2.

Proof. Assume a1 6<HB e. Let E be the set of operations made up of e and all e′ that

occur between a1 and e such that e′ <HB e. Note that set E cannot contain any events

from thread t1, or else a1 <HB e. Try to move all operations in E to right before a1. If

the move is not possible, it is either because these moved events have a common lock

with some non-moved event, f (a contradiction, since then f <HB e, and f would be

moved) or that the moved events clash with a non-moved event (also a contradiction

since it would imply a race before e1-e2 or a CP relation, which violates the assumption

of no-HB between a1 and the moved events). Therefore, moving E before a1 is possible,

and the result of the move maintains intra-thread order. However, moving E violates

the minimality property of tr′.

The fact that (e <HB e2) follows from similar reasoning as in Lemma 1, but

uses the assumption that e1 <HB e2 to establish that e1 is not among the moved

events.
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Lemma 3. Any clashing events that both occur before e2, or with one being e2 and

the other occurring after e1 and before e2, have to be CP-ordered.

Proof. Otherwise we trivially have a CP-race earlier than e1-e2.

Lemma 4. Consider any lock acquire event a1 for a critical section containing e1.

If a critical section c...c′ starts before event a1 and ends after a1 and before e1 then

a1 <CP c
′.

Proof. By induction.

Base case: Consider the c...c′ that ends the soonest after a1 (among all such c...c′ that

satisfy the stated conditions). Assume that a1 6<CP c′. By the well-nesting of lock

operations, such a critical section c...c′ cannot be performed by thread t1.

Let d be the first event after a1 in this critical section. We will try to move d...c′ to

the point right before a1, respecting intra-thread order. If the move is successful

it violates the minimality of tr′, hence the move must be illegal because it violates

some property of CR or of the definition of a trace. Therefore, the move must be

illegal for either of the usual two reasons:

1. It causes the result to not be a trace because the pairing of lock acquisi-

tion/releases becomes invalid (i.e. a lock is acquired while held).

2. The result is a valid trace t but t 6=CR tr
′ because a read now sees a different

written value.

For case (1), the moved events cannot be acquiring a lock held by thread t1 at

position a1, since that lock would not be released before e1. If the lock were held

by a thread other than t1, we have a critical section with the stated properties for

c...c′ that ends before the currently considered c...c′, which is impossible.
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Case (2) means that the moved events clash with some non-moved event that

occurs after a1. This non-moved event e′′ has to CP the moved event it clashes with

(by Lemma 3). But from Lemma 2 we have a1 <HB e′′ and therefore a1 <CP c
′.

Inductive case: the argument is identical to the base case, except in case (1) when we

consider the possibility that a lock that needs to be acquired by the moved events is

held by a thread other than t1. In this case, we have an earlier critical section g...g′

with the stated properties, and therefore a1 <CP g
′, by the inductive assumption.

But since our c...c′ acquires the same lock, we get the desired a1 <CP c
′.

Lemma 5. There cannot be a critical section by a thread other than t2 that starts after

event e1 and before e2, and ends after event e2.

Proof. Assume that such critical sections exist. Among them pick the c...c′ that starts

last, i.e. closest to e2. Let d be the last event before e2 of this critical section. We have

two cases:

1. If c...d does not contains nested critical sections inside it, we can move all events

c...d to the point right after e2. The proof is similar to that of Lemma 4. The

move respects intra-thread ordering. Also the moved events cannot be acquiring

a lock held at point e2. (There are no nested critical sections in the moved events,

and the lock acquired by event c is still held at e2.) Furthermore, the resulting

trace is a correct reordering of the original because if it were not we would then

have a clash between events whose relative position changes, i.e. between the

moved events and non-moved events. But in that case there would be a CP edge

originating in c...d to an event before e2 (by Lemma 3) and since c is between e1

and e2 we would get (using Lemma 1) e1 <CP e2 (a contradiction).

2. If c...d does contain critical sections, let g...g′ be the one ending last before e2.

Consider an event sequence produced as follows:
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- we drop all events starting from (and including) g of that thread

- we drop all events after e2 by all other threads.

Clearly the result is a prefix of tr′. If it is a legal trace that correctly reorders

tr′ then we are violating the minimality of tr′. In the resulting event sequence

there cannot be an event acquiring a lock already held: the only dropped lock

release events are either after e2 (in which case subsequent lock acquisitions are

also dropped), or are dropped together with their lock acquisition event (in the

case of g...g′ events). Note that if there is a critical section inside c...c′ that starts

before g...g′, it has to also end before g, or it would violate the definition of either

g...g′ or c...c′. Also, no read can see a different write, or this would imply a clash

between a dropped event after g and another before e2. In such a case we would

have a CP ordering, per Lemma 3 and e1 <CP e2, as before. We conclude that

the resulting trace correctly reorders tr′ and violates its minimality assumption:

a contradiction.

Armed with these lemmas about trace tr′ we can now attempt to prove the soundness

theorem. We will show that tr′ either has an HB race (in fact, e1 and e2 have to be

adjacent in this minimal trace) or, if not, the trace exposes a deadlock which can be

caused by a slightly reordered trace.

Clearly, if e1-e2 is an HB race in tr′ then we are done. Assume it is not. We

will try to CR-reorder tr′ so that one of the minimality properties is violated (which is

a contradiction). Consider the first event f such that:

• f is performed by a thread other than t1

• f occurs after e1 and before e2.
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Such an event needs to exist if e1-e2 are HB-ordered. Furthermore, by Lemma 1,

e1 <HB f , and since f is the first such event in any thread other than t1, it needs to be

a lock acquire. Consider then the critical section f...f ′. There are two cases:

1. f ′ occurs before e2. Let f...f ′ be over lock l. We get two subcases:

(a) l is not held by t1 during e1.

Since e1 <HB f and f is the first such event outside t1, there must be a critical

section over l after e1 and before f . Let g be the lock acquire event of that

critical section. g has to be an event by thread t1, otherwise the definition

of f would be violated (there would be another “first” event). Also, g has

to be after e1, by our assumption that l is not held during e1. Consider a

move of f...f ′ to right before point g. The move respects intra-thread order.

Also, if a read sees a different write then a moved event must clash with one

of the non-moved events after g, hence (Lemma 3) we have some e′′ such

that e′′ <CP f ′. But we have e1 <HB e′′ (by Lemma 1), e′′ <CP f ′, and

f ′ <HB e2 (by Lemma 1), hence e1 <CP e2: a contradiction.

Finally, the move may cause a lock, m, to be acquired while being held:

this means a critical section acquiring and releasing that lock is inside f...f ′.

(Assume w.l.o.g. that m is the first such lock.) If m is held at point g by

a thread t3, other than t1, then it has to be released before f , violating the

definition of f (since there is a different first event after e1 by a thread other

than t1).

A more interesting case is when lock m is held at point g by thread t1. In

that case, lock l is nested inside lock m in thread t1 (because l is acquired

at position g with m held) and lock m is nested inside lock l in thread t2.

We can cause a deadlock by moving a prefix of the f...f ′ critical section (up

until the lock m acquisition) to point g. Therefore the move of f...f ′ to point
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g either produces a legal trace t such that t =CR tr
′, or exposes a deadlock.

The move can be repeated until there are no more critical sections over lock

l between e1 and f...f ′. At that point, we can just move event f to right

before e1. This would produce a correctly reordered trace that violates the

minimality of tr′: a contradiction.

We conclude that if Case 1(a) occurs, there is always a deadlock in a correct

reordering of trace tr′.

(b) l is held by t1 during e1.

Let a2 be the last lock acquisition event of lock l before e1. Consider a move of

f...f ′ and all previous events by the same thread after a2 to right before point

a2. Let a′2 be the lock release paired with a2. The move respects intra-thread

order. Also, if a read sees a different write then a moved event must clash

with one of the non-moved events after a2, hence (by Lemma 3) we have some

e′′ such that e′′ <CP e′, where e′ is a moved event, and therefore e′′ <CP f ′

(since all the moved events precede f ′ and are by the same thread). But (by

Lemma 2) we have a2 <HB e′′ and therefore a2 <CP f
′. Since, however, the

critical sections starting at a2 and ending at f ′ are over the same lock l, we

get that a′2 <CP f ′, because of the second rule in the CP definition. This

implies e1 <CP e2 (since e1 is before a′2, by assumption of case 1(b), and

f ′ <HB e2, by Lemma 1): a contradiction.

Finally, we consider the case of the move being illegal because it causes a

lock, m, to be acquired while being held. If such an m is held by a thread t3,

other than t1, at point a2, then it has to be released before e1 (otherwise the

release event would violate the definition of f , since it would come before it,

after e1 and by a thread other than t1). This means that Lemma 4 applies to

the critical section of that thread. Hence, we have that a2 <CP h
′, where h′ is
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m’s release event in t3. But since h′ happens-before some moved event (since

the moved events acquire lock m), we get e1 <CP f ′ (again, all moved events

are program-ordered with f ′) and consequently (via Lemma 1) e1 <CP e2: a

contradiction.

If lock m is held at position a2 by thread t1, then l is nested inside m in

thread t1, while m is nested inside l in the thread performing f...f ′. (The

lock acquisition of m by that thread cannot be before f since the lock is

released after e1 and f is the first event after e1 by a thread other than t1.

Therefore m is acquired and released inside critical section f...f ′.) As before,

we can cause a deadlock by moving a prefix of the f...f ′ critical section (and

any earlier events after a2 by the same thread) to a2.

Therefore, this case again implies a deadlock in a reordering of trace tr′.

2. f ′ occurs after e2.

We then have by Lemma 5 that f...f ′ has to be performed by thread t2. Let

f...f ′ be over lock l. Lock l cannot be held by t1 during event e1, or e1 <CP e2.

Therefore, there must be some critical section g...g′ over l, performed by thread t1

after e1, such that g′ <HB f . (Recall that f is the first event after e1 by a thread

other than t1.) Assume w.l.o.g. that g...g′ is the last such critical section.

Consider an event sequence produced as follows:

- we drop g and all events e′ after g by a thread other than t2.

- we drop all events after e2 by all threads.

Clearly the result is a prefix of tr′. If it is a legal trace that correctly reorders

tr′ then we are violating the minimality of tr′. Therefore the result of this event

drop has to be illegal. The drop respects intra-thread order. Also, if a read sees

a different write then a dropped event must clash with one of the non-dropped
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events before e2. By Lemma 3 we get a CP edge between events after e1 and before

e2 in tr′, and by Lemma 1 and CP properties we have e1 <CP e2: a contradiction.

Thus, the event sequence cannot be a trace: a lock has to be acquired while held.

Such a lock, m, has to be acquired before one of the dropped events, with its

release among the dropped events. The lock is then re-acquired by one of the

non-dropped events, i.e. by thread t2. The acquisition of m has to be in thread t1

(otherwise f would not be the first event between e1 and e2 by a thread other than

t1). In thread t1, for trace tr′, lock l has to be nested inside m (since dropping

every event after g, which is an acquisition of l, caused the drop of the release but

not the acquisition of m). However, lock m is nested inside l in thread t2, since it

is acquired after l’s acquisition (point f) and before l’s release (which occurs after

e2). We can again cause a deadlock with an event move (of a prefix of f...e2).

This concludes the proof of the theorem: any CP race implies either an HB

race in the minimal trace tr′, or a deadlock in a reordered trace.
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