Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Technology-Enhanced Statistics Education with SOCR

Abstract

There is an ongoing need for clear and accessible statistics teaching tools for both

learners and instructors. Applications, step by step tutorials, and visualizations are ex-

tremely useful tools for teaching students to think scienti_cally, properly analyze the

data, use proper techniques, and identify common errors. In this paper we will demon-

strate technology-enhanced approaches for introductory statistics courses. Speci_cally

we develop two di_erent activities, using SOCR (Statistics Online Computational Re-

source) data, tools and resources. The _rst activity introduces multiple linear regression

using appropriate SOCR tools. In general, linear regression is used to describe a rela-

tionship between one variable to one or several other variables. Linear regression is used extensively in practical applications such as prediction and measuring the strength of relationships between variables. Proper linear regression techniques will be demonstrated, and appropriate methods for the analysis of regression results will be discussed. The second activity demonstrates the interactive power of the SOCR Motion Charts tool. SOCR Motion Charts allow the visualization of multivariate and high-dimensional data that has time and location dimensions. Used correctly, data visualization and statistical graphics are useful in presenting data in clear, intuitive, and engaging ways. Proper data visualization can reveal patterns and relationships that would have been hidden in other data structures, such as tables. The SOCR Motion Charts tool allows us to represent variables based on their size, time, and location attributes. With this technology we can detect patterns across time, as well as analyze the relationships of variables in terms of their magnitudes and locations. These activities and tutorials are implemented as interactive hands-on learning materials and are openly accessible on the web through the SOCR site www.socr.ucla.edu/.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View