- Main
Cultural analytics of large datasets from flickr
Abstract
Deluge became a metaphor to describe the amount of information to which we are subjected, and very often we feel we are drowning while our access to information is rising. Devising mechanisms for exploring massive image sets according to perceptual attributes is still a challenge, even more when dealing with user-generated social media content. Such images tend to be heterogenous, and using metadata-only can be misleading. This paper describes a set of tools designed to analyze large sets of user-created art related images using image features describing color, texture, composition and orientation. The proposed pipeline permits to discriminate Flickr groups in terms of feature vectors and clustering parameters. The algorithms are general enough to be applied to other domains in which the main question is about the variability of the images. Copyright © 2012, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-