Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Genome-wide DNA sampling by Ago nuclease from the cyanobacterium Synechococcus elongatus

Abstract

Members of the conserved Argonaute (Ago) protein family provide defence against invading nucleic acids in eukaryotes in the process of RNA interference. Many prokaryotes also contain Ago proteins that are predicted to be active nucleases; however, their functional activities in host cells remain poorly understood. Here, we characterize the in vitro and in vivo properties of the SeAgo protein from the mesophilic cyanobacterium Synechococcus elongatus. We show that SeAgo is a DNA-guided nuclease preferentially acting on single-stranded DNA targets, with non-specific guide-independent activity observed for double-stranded substrates. The SeAgo gene is steadily expressed in S. elongatus; however, its deletion or overexpression does not change the kinetics of cell growth. When purified from its host cells or from heterologous E. coli, SeAgo is loaded with small guide DNAs whose formation depends on the endonuclease activity of the argonaute protein. SeAgo co-purifies with SSB proteins suggesting that they may also be involved in DNA processing. The SeAgo-associated small DNAs are derived from diverse genomic locations, with certain enrichment for the proposed sites of chromosomal replication initiation and termination, but show no preference for an endogenous plasmid. Therefore, promiscuous genome sampling by SeAgo does not have great effects on cell physiology and plasmid maintenance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View