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plasma glucose from exhaled breath in healthy and type 1 diabetic subjects.
Am J Physiol Endocrinol Metab 300: E1166-E1175, 2011. First published
April 5, 2011; doi:10.1152/ajpendo.00634.2010.—Effective management
of diabetes mellitus, affecting tens of millions of patients, requires
frequent assessment of plasma glucose. Patient compliance for suffi-
cient testing is often reduced by the unpleasantness of current meth-
odologies, which require blood samples and often cause pain and skin
callusing. We propose that the analysis of volatile organic compounds
(VOCs) in exhaled breath can be used as a novel, alternative, nonin-
vasive means to monitor glycemia in these patients. Seventeen healthy
(9 females and 8 males, 28.0 = 1.0 yr) and eight type 1 diabetic
(T1IDM) volunteers (5 females and 3 males, 25.8 = 1.7 yr) were
enrolled in a 240-min triphasic intravenous dextrose infusion protocol
(baseline, hyperglycemia, euglycemia-hyperinsulinemia). In T1DM
patients, insulin was also administered (using differing protocols on 2
repeated visits to separate the effects of insulinemia on breath com-
position). Exhaled breath and room air samples were collected at 12
time points, and concentrations of ~100 VOCs were determined by
gas chromatography and matched with direct plasma glucose mea-
surements. Standard least squares regression was used on several
subsets of exhaled gases to generate multilinear models to predict
plasma glucose for each subject. Plasma glucose estimates based on
two groups of four gases each (cluster A: acetone, methyl nitrate,
ethanol, and ethyl benzene; cluster B: 2-pentyl nitrate, propane,
methanol, and acetone) displayed very strong correlations with glu-
cose concentrations (0.883 and 0.869 for clusters A and B, respec-
tively) across nearly 300 measurements. Our study demonstrates the
feasibility to accurately predict glycemia through exhaled breath
analysis over a broad range of clinically relevant concentrations in
both healthy and T1DM subjects.

volatile organic compounds; breath tests; gases; diagnostic techniques
and procedures; diabetes mellitus

THE INCIDENCE OF BOTH TYPE 1 AND TYPE 2 DIABETES (T1DM and
T2DM, respectively) has been rapidly increasing in recent
years (7, 14, 28, 32). For T1DM, prevalence is estimated to
double by 2020 in some populations (25); for T2DM, recent
estimates indicate that in 2050 between 20 and 33% of all
adults in the US may be diabetic (5). Because many of the
complications of diabetes can be prevented by tight glycemic
control, standard medical guidelines now call for patients to
self-monitor their blood glucose multiple times a day (1).
Current diabetes management typically relies on painful finger
lancing for glucose testing, a daily practice that many patients
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have come to hate, often resulting in fewer measurements and
worsened glycemic control.

Although alternative, noninvasive techniques such as near-
infrared or ultrasound sensors, dielectric impedance, and ionopho-
resis (20, 39) are being actively pursued by several research
laboratories, none have been developed sufficiently for clinical
practice at the present time; furthermore, the most promising
techniques appear to be rather costly. We are proposing the
quantification of volatile organic compounds (VOCs) in the ex-
haled breath as a novel, noninvasive methodology for plasma
glucose monitoring. Breath analysis offers many potential advan-
tages; it is completely painless, it is easily acceptable even by
children, it does not require patient interaction (important during
sleep), and it can become much cheaper than current glucose
meters because it does not require an interface between sample
and machine (i.e., for most glucose meters, hundreds of test strips
are needed every month, which can add up to thousands of dollars
annually). Moreover, additional information can conceivably be
captured simultaneously from the same breath sample to provide
a snapshot of an individual’s metabolic status, including insulin
and lipid levels (12, 21).

Although breath analysis technology has been proposed for
clinical diagnosis in multiple fields for decades (9, 23, 27, 35),
surprisingly few practical applications have been developed, and
very little has been reported previously in relation to diabetes.
Several studies have found associations between higher acetone
levels and the presence of diabetes in various patient populations
without attempting to actually derive plasma glucose values (8,
29, 37, 38). To date, our laboratory has been the only one to have
reported previously the ability to estimate glycemic levels through
integrated analysis of the kinetic profiles of multiple exhaled
gases; this was done in young healthy subjects during relatively
brief and simple glycemic fluctuations, such as oral (13) and
intravenous (iv) glucose tolerance tests (18). Furthermore, a
strong correlation between exhaled methyl nitrate profiles in the
low part-per-trillion range and glycemic levels in the 100 to 400
mg/dl range was observed in a cohort of TIDM children (22).
These studies clearly indicated that any effective predictive model
must incorporate the exhaled profiles of at least several VOCs.
Each of these profiles is also likely influenced not only by glucose
concentrations but possibly by a number of concomitant meta-
bolic changes, including insulin, lipids, and oxidative status,
which complicates data interpretation and potentially limits pre-
dictive ability across metabolic conditions and subject groups.

On the basis of these results and considerations, we hypoth-
esized that stronger breath-derived predictive models for
plasma glucose, applicable to both healthy and diabetic sub-
jects, could be obtained through more prolonged and complex
in vivo metabolic studies, encompassing multiple combina-
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tions of glycemic and insulinemic values. Therefore, we de-
signed the current study in healthy and TIDM subjects with
4-h clamp experiments, during which hyperglycemia and hy-
perinsulinemia were induced both simultaneously and sepa-
rately, and plasma glucose values were estimated accurately
through analysis of the profiles of clusters of four exhaled
gases collected at 12 time points during each study.

SUBJECTS AND METHODS

All procedures were approved by the University of California
Irvine (UCI) Institutional Review Board and conducted by specialized
personnel at the UCI Institute for Clinical and Translational Science
(ICTS). VOC analysis was conducted in the Rowland and Blake
Atmospheric Chemistry Laboratory at UCI.

Subjects

Seventeen healthy (9 females and 8 males, 28.0 = 1.0 yr) and eight
TIDM volunteers (5 females and 3 males, 25.8 = 1.7 yr) were
enrolled in our study. All signed informed consent forms prior to
participation, did not smoke, and had no known allergies. Healthy
subjects had no history of recent or chronic illnesses, nor were they
taking any medications. TIDM subjects had been diagnosed with the
condition =5 yr prior to study enrollment, did not have recent illness
or other chronic conditions, and did not take any medications besides
insulin. Given their well-documented, long-term clinical history of
T1DM, C-peptide screening was not performed before enrollment.

Study Procedures

Subjects reported to the ICTS at 7:30 AM after an overnight fast.
T1DM subjects, if not on an infusion pump, were asked to not inject
any long-acting insulin following their previous evening meal until
after the study’s end and inject only fast-acting insulin as per their
normal regimen. For subjects on insulin pumps, the basal infusion rate
was maintained until iv catheters were placed. At that point, the
insulin pump was discontinued and replaced by iv insulin adminis-
tration at the same rate.

Following the collection of anthropomorphic data, iv catheters were
placed in the antecubital veins of both arms for subsequent blood drawing
and iv glucose/insulin infusions. All experiments began at § AM and
lasted 240 min, following this general format: a 60-min baseline period
(t = 0—60 min), a 30-min transition to hyperglycemia (t = 60—90 min),
a 60-min hyperglycemic period (r = 90—150 min), a 30-min transition
back to euglycemia with sustained hyperinsulinemia ( = 150-180 min),
and a 60-min euglycemic hyperinsulinemic period (¢t = 180-240 min). In
all experiments, matched breath, room air, and 10-ml blood samples were
collected at multiple time points: t = 40, 60, 90, 110, 130, 140, 150, 180,
200, 220, 230, and 240 min; additional 1-ml blood aliquots were collected
every 5 min after the baseline period for the monitoring of plasma glucose
(t = 60-240 min).

Glucose Infusion

In all participants, the glycemic levels at admission were main-
tained throughout the baseline period; T1DM subjects who presented
with some degree of hyperglycemia were not corrected to euglycemia.
This design was to allow baseline measurements with a stable meta-
bolic milieu, minimizing any confounding effects of rapid metabolic
changes on exhaled gases. Independent of initial glycemia, at = 60
min, a variable-rate iv infusion of 20% dextrose was started to bring
plasma glucose to a target level of 205-225 mg/dl over the following
30 min; glycemia was then kept at this level for 1 h (+ = 90-150 min),
with adjustments of the glucose infusion rate based on plasma glucose
measurements obtained every 5 min. At the end of the hyperglycemic
period, the glucose infusion rate was transiently reduced to maintain
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euglycemia by # = 180 min and constantly adjusted until study’s end
(t = 240 min).

Insulin Infusion

Healthy subjects. All of our 17 healthy subjects participated in
protocol H, in which no exogenous insulin was infused until the end of
the hyperglycemic period (r+ = 150 min); however, during hyperglyce-
mia, a physiological endogenous insulin response increased plasma levels
to ~10-fold basal concentrations. At ¢ = 150 min, iv infusion of
exogenous fast-acting insulin (Novolin R; Novo Nordisk, Princeton, NJ)
was started at a constant rate of 1.5 mU-kg ' min~! and maintained
until the end of the study. This design allowed us to sustain hyperinsu-
linemia despite the return to euglycemia during the last 60 min.

TIDM subjects. All eight TIDM participants underwent a first
protocol (protocol DM-I1) in which the plasma insulin profile was
made to resemble that of healthy subjects (protocol H). Because
T1DM subjects do not release endogenous insulin during hypergly-
cemia, a low-rate insulin infusion was started at t+ = 60 min and
gradually increased through the hyperglycemic period. By r = 150
min, the infusion rate had reached 1.5 mU-kg ! min~! and was
continued unchanged from this point until study end, similar to what
was done in the healthy group.

Five of our TIDM subjects (2 males and 3 females) also partici-
pated in a second protocol (protocol DM-2) in which the exogenous
insulin infusion profiles were identical to that used in healthy subjects;
i.e., no exogenous insulin was infused during the hyperglycemic
period. Therefore, because neither endogenous nor exogenous insulin
was released in these studies from ¢ = 60 to t = 150 min, a state of
“unchallenged” hyperglycemia was obtained. This phase was devel-
oped specifically to separate the contributions of hyperglycemia and
hyperinsulinemia to exhaled gases, simulating real life in T1DM
patients, in whom prolonged hyperglycemia is often paralleled, and
indeed caused by, absent or insufficient insulin concentrations. After
¢t = 150 min, a constant infusion rate of 1.5 mU-kg ™ '-min~"' insulin
was started, similar to what was done in the other two protocols.

Gas Sample Collection and Analysis

Exhaled breath was collected in 1.9-1 custom-made stainless steel
canisters that had been sterilized before use at 150°C, pumped to 10>
atm, flushed with purified helium, and repumped to 105 atm. Study
participants, after two tidal volume ventilations and a deep inspiration,
slowly exhaled for ~10 s through a three-way valve mouthpiece into
the canister. The first 3 s (—~500 ml) of exhaled gas was vented to the
room to clear anatomic dead space. A room air sample was collected
simultaneously in an identical canister. These gas canisters were then
taken to the Rowland and Blake Atmospheric Chemistry Laboratory,
stored at room temperature, and analyzed within 1 wk.

On the day of analysis, a 275-ml sample aliquot (at standard
temperature and pressure) was introduced in the system manifold and
passed over glass beads chilled by liquid nitrogen (—196°C), with
flow kept below 500 ml/min to ensure complete trapping of the
relevant components. This procedure preconcentrated the relatively
less volatile sample components (e.g., halocarbons, hydrocarbons)
while allowing volatile components (e.g., N», O,, and Ar) to be
pumped away. The less volatile compounds were then revolatilized by
immersing the loop containing the beads in hot water (80°C) and
flushed into a helium carrier flow (head pressure at 48 psi). The
sample flow was then split into five streams for chromatographic
separation by a multicolumn/multidetector gas chromatography sys-
tem utilizing two electron-capture detectors (sensitive to halocarbons
and alkyl nitrates), two flame ionization detectors (sensitive to hydro-
carbons), and a quadruple mass spectrometer detector (for unambig-
uous compound identification and selected ion monitoring). In total,
concentrations of ~100 VOCs were quantified for analyses pertinent
to this study. Each chromatographic peak was manually identified and
integrated, peak shape was checked for possible coeluting com-

AJP-Endocrinol Metab « VOL 300 « JUNE 2011 « www.ajpendo.org

2T0Z ‘TT 1900190 U0 sUIAl| BlUIOHED JO Alun Te /Bio ABojoisAyd-opuadfe/:dny woly papeojumoq



http://ajpendo.physiology.org/

E1168

pounds, and area was compared with VOC standards. More detailed
methodological descriptions have been reported previously (6, 33).

Blood Analysis

Peripheral blood was collected into EDTA-treated Vacutainer tubes
(BD Biosciences, Franklin Lakes, NJ). Samples were centrifuged
immediately following each draw, and plasma glucose concentrations
measured in triplicate using a Beckman Glucose Analyzer II (Beck-
man, Fullerton, CA). Remaining plasma was stored at —80°C until
assays were performed. Insulin levels in plasma were determined by
Human Insulin ELISA Kit EZHI-14K from Linco Research (St.
Charles, MO) after extraction with the acid-ethanol method. Intra-
assay coefficient of variation (CV) was 4.6—7.0%, interassay CV was
9.1-11.4%, and assay sensitivity was 2 wU/ml.

Data Analysis and Statistics

Exhaled breath and room air samples as well as matching periph-
eral blood samples (drawn simultaneously and 5, 10, and 15 min
before gas sampling to account for possible lag times) were collected
at 10 time points for both healthy and T1DM subjects (2 additional
preliminary time points were collected to document metabolic stabil-
ity and were not included in the analysis). Of the potentially usable
300 matched data points across all subjects, gas measurements
were missing or technically unsatisfactory in 10 instances, and the
entire data point was dropped from the analysis. These 10 data points
were dispersed randomly across participants and study phase, and
therefore, no further adjustment to our data set was required. For all
our calculations, A-values of exhaled gases (differences between room
air and breath concentrations) were used.

We initially generated predictive models for each study participant,
utilizing a set of four gases (cluster A: acetone, methyl nitrate, ethanol,
and ethyl benzene) that we used to predict blood glucose during an
earlier experiment only on health subjects (18) via multiple linear
regression analysis and standard least squares fitting by JMP software,
version 8 (SAS Institute, Cary, NC). We then explored alternative gas
clusters from our total of ~100 measured exhaled VOC profiles. We
first reduced the number of potential gas candidates for inclusion in
our predictive algorithms to 20. Namely, we chose all gases from the
subset that most accurately predicted corresponding plasma glucose
concentrations according to best subset regression analysis (of subsets
=20 variables) calculated by SAS software, version 9.2 (SAS Insti-
tute). We then proceeded to generate multiple predictive models for
plasma glucose based on 4-VOC clusters within this restricted list of
20, using standard least squares regression as determined by JMP
software. With this approach, we identified several gas clusters that
were able to predict plasma glucose with reasonable accuracy, among
which 2-pentyl nitrate, propane, methanol, and acetone (cluster B)
displayed the highest correlation values. Therefore, data obtained with
clusters A and B will comprise the main results of this study.

Prior observations from our group also indicated the possible
presence of variable lag times between changes in a plasma metabolite
concentration and corresponding changes in exhaled gas concentra-
tions. If a time delay is not incorporated into the predictive models,
breath-based estimates of blood glucose may be lower than the actual
plasma concentration during rapid increases of glycemia and higher
than actual plasma values during rapid decreases. Therefore, in the
attempt to identify and account for possible lag times in our data set,
we generated additional predictive models pairing VOC samples with
glucose values determined 5, 10, and 15 min prior to breath collection.

Although glucose predictions generated with the simultaneous gas
measurements were reasonably strong, the greatest accuracy in glu-
cose prediction was indeed obtained with glucose readings taken 15
min prior to exhaled gas collection; therefore, study results will be
presented utilizing predictions with this time frame. Matched plasma
and gas samples at 290 and 295 data points (out of a total possible
maximum of 300 time-offset points) were included in our final

BREATH TESTING FOR PLASMA GLUCOSE

analysis for clusters A and B, respectively. The missing data points
were distributed across the whole study population, with no individual
study subjects having <9 out of 10 possible data points.

All equations followed the standard format of “[predicted glucose:
(t — )] = Xo + Xilgas 1()] + Xo[gas 2(1)] + X3[gas 3(#)] + X3[Gas
4(1)]”, where t represents time, ¢ is a time offset, and Xo, X;, X5, and
X3 are coefficients that represent the expected difference in glucose
when the concentration of each corresponding gas is increased by one
unit, whereas other gases are kept constant. To assess the statistical
accuracy of our models from a clinically relevant point of view,
measured and predicted glucose values were plotted against each
other on a Parkes glucose consensus error grid (24) as well as
analyzed via Bland-Altman plots (4). Pearson’s product-moment cor-
relation coefficients were also calculated.

RESULTS
Glycemic Targets

During the hyperglycemic period (+ = 90—150 min) in all
three experimental protocols, the target glycemic range of
205-225 mg/dl was achieved (207 = 2.5 mg/dl in healthy
subjects during protocol H, 208 £ 3.6 mg/dl in TIDM subjects
during protocol DM-1, and 222 = 4.5 mg/dl in T1DM subjects
during protocol DM-2) (Fig. 1). In all test subjects, euglycemia
was then restored by # = 180 min and maintained until study’s
end. During the final hyperinsulinemic period, plasma insulin
increased similarly in all groups (86.9 % 4.3 pU/ml in protocol H,
90.5 = 4.5 pU/ml in protocol DM-1, and 93.5 = 6.1 pU/ml in
protocol DM-2); however, during the 60- to 150-min period,
insulin concentrations were significantly lower in protocol DM-2
vs. both protocol DM-1 and protocol H (P = 0.0003—0.0065).

Plasma Glucose Estimations

Cluster A. Using predictive models based on cluster A, the
mean correlation coefficient between predicted and measured
glucose concentrations was 0.883; glucose predictions were found
to deviate from our reference glucometer by an average of 15%.

When considering only healthy subjects, the mean correlation
coefficient was 0.836, and all values ranged between r = 0.654
and r = 0.975. During all study visits in TIDM subjects, we
reported a mean correlation coefficient of 0.950; the strongest
correlation was 0.999, and the weakest correlation was 0.799. The
strong correlation between measured and predicted values was
also maintained when cumulative data from the healthy (r =
0.839, 167 data points) and T1DM groups (r = 0.945, 123 data
points) were compared (Fig. 2, top). When all 290 data points
from all study participants were included in a single plot, the
overall correlation coefficient was 0.887 (n = 30). Representative
overlays of measured and predicted glucose concentrations during
the 4-h study visit are displayed in Fig. 2, bottom.

Cluster B. When predicted glucose concentrations that were
generated using cluster B were plotted separately against mea-
sured glucose values, the mean correlation coefficient was
0.869 (n = 30); glucose predictions were found to deviate from
our reference glucometer by an average of 17%.

For the 17 healthy subjects, the mean correlation coefficient
was 0.829, with values ranging between 0.641 and 0.962. The
mean correlation coefficient for all TIDM study visits was
0.920 (n = 13); the strongest correlation coefficient was 0.990,
whereas the weakest was 0.776. The strong correlation be-
tween measured and predicted values was also maintained
when cumulative data from the healthy (r = 0.829, 168 data
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points) and T1IDM groups (r = 0.923, 127 data points) were
compared (Fig. 3, fop). When all 295 data points from all study
participants were included in a single plot, the overall corre-
lation coefficient was 0.934 (n = 30). Representative overlays
of measured and predicted glucose concentrations during the
4-h study visit are displayed in Fig. 3, bottom.

Assessment of Clinical Relevance

The clinical relevance of the discrepancy between measure-
ments from a novel glucose-measuring device and the gold
standard can be assessed in several ways; among the most used

are Parkes glucose consensus error grids and Bland-Altman
plots.

In a Parkes consensus error grid, glucose estimates differing
from gold standard measurements are categorized on the basis
of their possible impact on clinical decision (24). By applying
this methodology, 286 of 290 glucose concentrations predicted
through our analysis on cluster A were shown to have “no
effect on clinical action” or “little or no effect on clinical
outcome” compared with those measured by the Beckman
Glucose Analyzer II; only four values (1.4%) were considered
“likely to affect clinical outcome” (Fig. 4). Similarly, using the
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Fig. 2. Top: plasma glucose concentrations predicted from cluster A (acetone, methyl nitrate, ethanol, and ethyl benzene) are plotted against measured plasma
glucose concentrations. Each dot represents a time point from our 17 study visits by healthy subjects (9 females and 8 males, 28.0 £ 1.0 yr) and 13 study visits
by T1DM volunteers (protocol DM-1: n = 8, 5 females and 3 males, 25.8 = 1.7 yr; protocol DM-2: n = 5, 2 males and 3 females). Bottom: time course overlays
of predicted and measured glucose concentrations during a 4-h study visits displayed; the subjects from both healthy and TI1DM cohorts with the 2 highest and
2 lowest correlations are presented. Dashed lines represent glucose concentrations predicted by breath gases (incorporating a 15-min time delay), and the solid

lines represent plasma measurements from our Beckman Glucose Analyzer II.

alternative gases in cluster B, 293 of 295 predictions would
have minimal effect, if any, on clinical action, whereas only
two values (0.7%) were likely to affect clinical outcome.
The use of Bland-Altman plots adds an assessment of
whether differences are biased or heteroskedastic (i.e., worse at
high or low values of the variable of interest). Using this
technique, we confirmed that the reported differences between
measured and predicted glucose values have negligible bias
(<0.000001 mg/dl), are normally distributed [17 of 295 points
(6.01%) for cluster A and 13 of 295 points (4.41%) for cluster
B are off >2 SD from the mean difference, the proposed cut

point for agreement between measurements], and have overall
limited heteroskedascity.

DISCUSSION

The main result of our study is the demonstration that
noninvasive estimations of plasma glucose over a broad range
of clinically relevant concentrations in both healthy and TIDM
subjects are possible. This finding was achieved in controlled
experimental conditions via the integrated analysis of four
exhaled VOCs, indicating that, despite marked metabolic dif-
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nitrate, propane, methanol, and acetone) are plotted against measured plasma

glucose concentrations. Each dot represents a time point from our 17 study visits by healthy subjects (9 females and 8 males, 28.0 = 1.0 yr) and 13 study visits
by T1DM volunteers (prootcol DM-1: n = 8, 5 females and 3 males, 25.8 = 1.7 yr; protocol DM-2: n = 5, 2 males and 3 females). Bottom: time course overlays
of predicted and measured glucose concentrations during 4-h study visits displayed; the subjects from both healthy and TIDM cohorts with the 2 highest and
2 lowest correlations are presented. Dashed lines represent glucose concentrations predicted by breath gases (incorporating a 15 min time delay), and the solid

lines represent plasma measurements from our Beckman Glucose Analyzer II.

ferences across participant groups, some clusters of gases can
provide similar predictive accuracy.

Our results expand prior findings based on shorter and less
complex glycemic and insulinemic fluctuations (i.e., glucose
tolerance tests) in healthy subjects only (13, 18). From these
early studies, it became apparent that predicting plasma glu-
cose would require simultaneous analysis of several exhaled
gas profiles, some of which may reflect plasma glucose indi-
rectly through parallel changes in other energy substrate me-
tabolites. Therefore, a number of accuracy problems could
have potentially arisen when the technique was applied to

conditions with altered metabolic milieu, such as diabetes. A
certain exhaled VOC combination, for instance, may be asso-
ciated with hyperglycemia in healthy subjects; because these
individuals are expected to display a relatively constant rela-
tionship between glucose and insulin, some of the gas changes
may have been caused by spontaneous reactions to hyperinsu-
linemia rather than by hyperglycemia per se. The same exhaled
VOC combination might not accurately predict glycemia in a
T1DM subject, in whom the same levels of hyperglycemia may
be associated with a wide range of insulin values. Therefore,
breath-based glycemic predictions applicable to both healthy
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and T1DM subjects must rely on VOCs that are relatively
unaffected by insulinemia, identifiable through experimental
conditions in which plasma glucose and insulin fluctuations
occur independent of each other. The multiple experimental
protocols included in this study addressed this concern specif-
ically and allowed us to identify multiple VOC clusters that
maintained similar predictive accuracy for blood glucose con-
centrations in both healthy and diabetic subjects. Conversely,
analysis of broader exhaled gas databases on larger populations
may lead to the discovery of exhaled gases uniquely present in
specific metabolic conditions (hyper- or hypoglycemia) or in
population subsets (obesity, type 2 diabetes, children), poten-
tially enhancing the diagnostic vs. monitoring applications of
this methodology.

Despite the recognized potential of breath analysis, practical
clinical applications seem to remain elusive, likely for two
fundamental reasons. First, many breath VOCs, present in the
part-per-trillion range or less, were below the detection range
of many analytical systems in past decades. Only recent tech-
nological advances in VOC analysis have allowed our group to
reliably measure the concentrations of these gases as low as 10
parts/quadrillion (6, 15, 43). Second, one must consider that
most existing studies have measured exhaled breath at single
time points. Although this experimental design may detect
diagnostic markers to rule a condition in or out [e.g., heart
allograft rejection (26) or liver disease (31)], it is likely to
greatly underutilize the potential of VOC analysis. Although
this approach is based on the assumption that an exhaled gas
profile is constant in a given disease, it is likely that VOCs are
instead generated from dynamic endogenous biochemical pro-
cesses. Kinetic measurements of multiple gases could detect
these changes for the monitoring of evolving, complex meta-
bolic conditions, including hyperglycemia in diabetic patients.
Therefore, we have developed and are utilizing a repeated-
measure approach to VOC analysis for our experiments.

Independent of the metabolic processes resulting in VOC
production, diabetic subjects may also present with microstruc-
tural changes in pulmonary tissue that could then lead to
impaired lung function and reduced alveolar blood gas ex-
change (41). Chronic nonenzymatic cellular glycosylation re-
sulting from chronic hyperglycemia may lead to vascular
basement membrane thickening and remodeling as well as
altered gap junction intercellular communication (30, 42),
resulting in microangiopathy. As a result, gas diffusion patterns

Measured Blood Glucose (mg/dL)

may be altered and affect breath gas composition. We cannot
exclude that the overall presence of diabetes (or specific
metabolic conditions such as hypoinsulinemia) may have af-
fected some exhaled gas patterns, but it did not appear to
significantly impact our selected gases or the accuracy of our
predictive models. Although we lack the elements to correctly
conduct such analysis, not having powered the study for this
outcome, we feel it may be informative to report how the three
protocols influenced the scatter of correlation coefficients be-
tween measured and predicted glucose values through a vari-
ability summary plot (Fig. 5). Interestingly, this distribution
appears to be tighter in T1DM subjects vs. healthy subjects and
similar between protocols DM-1 and DM-2.

In the current study, which included TIDM subjects, we
confirmed our prior findings observed in healthy subjects that
methyl nitrate, acetone, ethyl benzene, and ethanol (cluster A)
can provide a useful basis for glucose prediction models (18).
Although the complete elucidation of the complex biochemical
pathways connecting breath levels of these gases to systemic
glycemia is well beyond the scope of this article, some estab-
lished characteristics of each gas allow us to generate plausible
hypotheses. Methyl nitrate derives from oxidative processes in
the atmosphere and is the putative by-product of oxidative
stress in biological systems, where it was observed to increase
acutely after ingestion of high-fat meals (3). In a previous
report, exhaled methyl nitrate also closely paralleled hypergly-
cemia in a group of T1DM children (22). Our current findings
also show a similar relationship between methyl nitrate and
glucose in TIDM adults (Fig. 6); this gas had a weaker but still
positive correlation with plasma glucose in healthy subjects.
Ethyl benzene is an aromatic VOC that is present at very low
concentrations in room air and is typically inhaled, metabo-
lized by the liver, and exhaled at lower concentrations. Its rate
of metabolism is modulated by conditions affecting overall
hepatic enzymatic activity, such as hyperglycemia or increased
hepatic blood flow, transiently increasing exhaled profiles (36).
Acetone, generated via oxidation of free fatty acids, is sup-
pressed with the concomitant increase in insulin during hyper-
glycemia (16). Ethanol is produced during fermentation of
glucose by gut flora and exhaled in the breath at very low
concentrations. Interestingly, this appears to occur not only
after glucose ingestion but also to a smaller extent with
iv-induced hyperglycemia.
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Although inclusion of cluster A into our predictive models
allowed accurate glycemic predictions, the inclusion of ethanol
as one of the gases raised a series of concerns, because
measurement of this gas was technically problematic at a
number of time points. Therefore, to remove this constraint, we
proceeded to identify additional gas clusters that would allow
glycemic predictions with similar accuracy. This process is a
reflection of the remarkable flexibility of our technique, in
which at least a dozen exhaled gases appear to be influenced by
glycemic fluctuations, and will be a key feature in the devel-
opment of future portable breath-testing devices. After analysis
of several alternative gas clusters, 2-pentyl nitrate, propane,
methanol, and acetone (cluster B) displayed the highest pre-
dictive accuracy. Again, without claiming to clarify in-depth
biochemical links between plasma and exhaled variables, we
identified several possible connections. Like the aforemen-
tioned methyl nitrate, 2-pentyl nitrate belongs to the akyl
nitrate family and can be generated through pathways involv-
ing an organic peroxy (RO;-) radical with either NO and NO,
(2). Similarly to methyl nitrate, generation of 2-pentyl nitrate
could, therefore, conceivably be modulated by acute changes in
systemic oxidative status, which is affected by hyperglycemia.
Propane can be generated by three pathways, all of which are
in equilibrium with or affected by glucose metabolism: n-4

fatty acid (18:3) peroxidation (17); protein oxidation, espe-
cially oxidation of branched-chain amino acids (17a); or pro-
duction by colonic bacteria (which is affected by substrate
availability) (17a). Methanol appears to reflect gut flora activ-
ity (40), similarly to ethanol and propane, and therefore, it is
responsive to glycemic fluctuations. Although this likely ac-
counts for the majority of its exhaled concentrations, methanol
is also a commonly used industrial chemical and may be
partially inhaled (40). It is also a natural component of ripe
fruits and alcohol, which may contribute to systemic methanol
levels when consumed (19), and is a by-product of pectin
degradation by human colonic bacteria (34) as well as endog-
enous hydrolysis of the artificial sweetener aspartame (10). The
definitive biochemical links of these exhaled VOCs with
plasma variables relevant to diabetes, their reliability as glu-
cose predictors in all metabolic conditions and in all dysmeta-
bolic patient groups, and their stability over time will have to
be documented in future studies stemming from our current
observations.

It is also worth noting how the seven gases included in our
two clusters displayed considerable variability in their kinetic
patterns. For instance, acetone, methyl nitrate, and 2-pentyl
nitrate displayed consistent downward trends through the study
(2-pentyl nitrate, being actively taken up by the body, shifted

Fig. 6. A representative time course overlay of glucose and
methyl nitrate concentrations for one T1DM subject undergo-
ing protocol DM-2 (r = 0.974) is displayed. In a previous
study, we observed methyl nitrate to parallel hyperglycemia in
a cohort of TIDM children (22). A weaker correlation was
observed in healthy subjects.
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toward a more negative breath room air delta). For these three
gases, the covariate coefficients in our model were positive, a
phenomenon we had already observed and attributed, at least in
healthy subjects, to the antiketogenic effect of insulin when it
increases in response to glucose. It was intriguing to observe
that this persists in TIDM, even when insulin replacement was
delayed after hyperglycemia. The remaining four gases (ethyl-
benzene, ethanol, propane, and methanol) displayed inverse
relationships to blood glucose in the majority of the subjects.
Although methanol profiles were relatively homogeneous
across subjects, a progressive drop in net uptake of ethylben-
zene was noted only in healthy subjects, whereas TIDM
subjects displayed very little uptake even at baseline. For
ethanol and pentane, transient biphasic bell-shaped profiles
were observed in all three groups, each with different time
courses.

The main downstream goal of this project is the develop-
ment of portable, lightweight, and inexpensive breath-testing
devices that may replace current blood-based glucose meters. It
is important to highlight here that although the profiles of the
same four gases were used in all subjects in our study to predict
each variable, the actual predictive algorithms were unique to
each subject. This means that in its current state of develop-
ment, even if the technique was translated into a portable
testing device, it would require an initial individual calibration
study for each subject. Although this would imply an inability
to use the methodology for screening purposes, it should be
noted the that the overwhelming majority of current blood
glucose tests are not performed for diagnostic purposes but
rather for repeated daily monitoring by already diagnosed
diabetic patients. For these subjects, undergoing a calibration
procedure (that probably will be similar to a glucose tolerance
test) may represent a very appealing trade-off for them not
having to lance their skin five to seven times a day, even if the
calibration had to be repeated annually. This being said,
the possibility is still very real that accurate, common predic-
tive equations that will allow direct testing in all subjects may
be derived, even those not previously calibrated. Our technol-
ogy for VOC analysis has in fact been improving steadily, with
detection and incorporation of more known but previously
unused VOCs into our models as well as identification of
completely novel gas species.

An additional technical issue that needs to be considered is
that our glycemic predictions, although reasonable when based
on simultaneous breath and plasma samples (roughly the same
accuracy as current continuous glucose-monitoring systems),
were most accurate when matching plasma glucose values
obtained 15 min before breath collection. First, the multiple
expected improvements in our core technology may render the
impact of these lag times negligible. Furthermore, as stated
above, considerable flexibility in model development is af-
forded by the relatively broad range of usable VOC combina-
tions, and negative selection of VOCs that are susceptible to
lag time effects may prove effective. Models without these
gases may yield slightly less accurate (but still clinically
relevant) predictions and may end up being selected for pro-
totype development. Finally, although some gases with lag
times might be indispensable for model accuracy, a lag effect
could potentially be incorporated in the model, given that its
timing is stable, by estimating the magnitude of glycemic
change between time of sampling and time of most accurate

BREATH TESTING FOR PLASMA GLUCOSE

estimate (i.e., —15 min). This approach would also require
estimating the direction of the glycemic change (increase, no
change, decrease) between these two time points, which is
difficult with a single measurement point. However, we have
identified some gases (e.g., xylenes) whose breath/room air
ratio reflects the presence of an acute change in glycemia rather
than absolute glucose concentrations; integration of this infor-
mation may help solve the issue.

It should also be noted that accuracy of glycemic prediction
in the hypoglycemic range was not tested in our study. Obvi-
ously, any technique claiming to effectively replace current
glycemic monitoring in TIDM must be able to accurately
capture hypoglycemic values. In our case, it would be naive to
expect our reported predictive models to automatically work
during hypoglycemia because the unique admixture of meta-
bolic and hormonal changes induced by hypoglycemia may
significantly affect exhaled VOC concentrations. Because ad-
dressing this issue requires additional comprehensive, carefully
designed protocols, hypoglycemic testing was beyond the cur-
rent scope of our study but will certainly be the focus of future
work from our group.

In summary, this study marks the first time that we were able
to reconstruct glucose concentrations from exhaled gas profiles
in both healthy and T1DM subjects. These predictions were
achievable via integrated analysis of several clusters of four
gases (of which 2 are reported), a number that we believe
sufficiently small to develop into a portable breath-testing
device that could have considerable impact on the approach to
diabetes monitoring in broad populations. Further evolution of
the methodology, possibly including breath tests for plasma
insulin and lipids, may extend to large-scale screening projects
for populations where blood draws would be impractical or
impossible.
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